Search (6 results, page 1 of 1)

  • × author_ss:"Mayr, P."
  • × year_i:[2000 TO 2010}
  1. Lewandowski, D.; Mayr, P.: Exploring the academic invisible Web (2006) 0.03
    0.027659154 = product of:
      0.110636614 = sum of:
        0.110636614 = weight(_text_:engines in 3752) [ClassicSimilarity], result of:
          0.110636614 = score(doc=3752,freq=6.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.4861493 = fieldWeight in 3752, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3752)
      0.25 = coord(1/4)
    
    Abstract
    Purpose: To provide a critical review of Bergman's 2001 study on the Deep Web. In addition, we bring a new concept into the discussion, the Academic Invisible Web (AIW). We define the Academic Invisible Web as consisting of all databases and collections relevant to academia but not searchable by the general-purpose internet search engines. Indexing this part of the Invisible Web is central to scien-tific search engines. We provide an overview of approaches followed thus far. Design/methodology/approach: Discussion of measures and calculations, estima-tion based on informetric laws. Literature review on approaches for uncovering information from the Invisible Web. Findings: Bergman's size estimate of the Invisible Web is highly questionable. We demonstrate some major errors in the conceptual design of the Bergman paper. A new (raw) size estimate is given. Research limitations/implications: The precision of our estimate is limited due to a small sample size and lack of reliable data. Practical implications: We can show that no single library alone will be able to index the Academic Invisible Web. We suggest collaboration to accomplish this task. Originality/value: Provides library managers and those interested in developing academic search engines with data on the size and attributes of the Academic In-visible Web.
  2. Lewandowski, D.; Mayr, P.: Exploring the academic invisible Web (2006) 0.03
    0.027659154 = product of:
      0.110636614 = sum of:
        0.110636614 = weight(_text_:engines in 2580) [ClassicSimilarity], result of:
          0.110636614 = score(doc=2580,freq=6.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.4861493 = fieldWeight in 2580, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2580)
      0.25 = coord(1/4)
    
    Abstract
    Purpose: To provide a critical review of Bergman's 2001 study on the deep web. In addition, we bring a new concept into the discussion, the academic invisible web (AIW). We define the academic invisible web as consisting of all databases and collections relevant to academia but not searchable by the general-purpose internet search engines. Indexing this part of the invisible web is central to scientific search engines. We provide an overview of approaches followed thus far. Design/methodology/approach: Discussion of measures and calculations, estimation based on informetric laws. Literature review on approaches for uncovering information from the invisible web. Findings: Bergman's size estimate of the invisible web is highly questionable. We demonstrate some major errors in the conceptual design of the Bergman paper. A new (raw) size estimate is given. Research limitations/implications: The precision of our estimate is limited due to a small sample size and lack of reliable data. Practical implications: We can show that no single library alone will be able to index the academic invisible web. We suggest collaboration to accomplish this task. Originality/value: Provides library managers and those interested in developing academic search engines with data on the size and attributes of the academic invisible web.
  3. Mayr, P.: Google Scholar als akademische Suchmaschine (2009) 0.01
    0.012775214 = product of:
      0.051100858 = sum of:
        0.051100858 = weight(_text_:engines in 3023) [ClassicSimilarity], result of:
          0.051100858 = score(doc=3023,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.22454272 = fieldWeight in 3023, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.03125 = fieldNorm(doc=3023)
      0.25 = coord(1/4)
    
    Abstract
    Neben den klassischen Informationsanbietern Bibliothek, Fachinformation und den Verlagen sind Internetsuchmaschinen inzwischen fester Bestandteil bei der Recherche nach wissenschaftlicher Information. Scirus (Elsevier, 2004) und Google Scholar sind zwei Beispiele für Suchdienste kommerzieller Suchmaschinen-Unternehmen, die eine Einschränkung auf den wissenschaftlichen Dokumentenraum anstreben und nennenswerte Dokumentzahlen in allen Disziplinen generieren. Der Vergleich der Treffermengen für beliebige Suchthemen zeigt, dass die Wahl des Suchsystems, des Dokumentenpools und der Dokumenttypen entscheidenden Einfluss auf die Relevanz und damit letztlich auch die Akzeptanz des Suchergebnisses hat. Tabelle 1 verdeutlicht die Mengenunterschiede am Beispiel der Trefferergebnisse für die Suchbegriffe "search engines" bzw. "Suchmaschinen" in der allgemeinen Internetsuchmaschine Google, der wissenschaftlichen Suchmaschine Google Scholar (GS) und der größten fachübergreifenden bibliographischen Literaturdatenbank Web of Science (WoS). Der Anteil der Dokumente, die in diesem Fall eindeutig der Wissenschaft zuzuordnen sind (siehe GS und insbesondere WoS in Tabelle 1), liegt gegenüber der allgemeinen Websuche lediglich im Promille-Bereich. Dieses Beispiel veranschaulicht, dass es ausgesprochen problematisch sein kann, fachwissenschaftliche Fragestellungen ausschließlich mit Internetsuchmaschinen zu recherchieren. Der Anteil der fachwissenschaftlich relevanten Dokumente in diesem Trefferpool ist i. d. R. sehr gering. Damit sinkt die Wahrscheinlichkeit, wissenschaftlich relevantes (z. B. einen Zeitschriftenaufsatz) auf den ersten Trefferseiten zu finden, deutlich ab.
  4. Daniel, F.; Maier, C.; Mayr, P.; Wirtz, H.-C.: ¬Die Kunden dort bedienen, wo sie sind : DigiAuskunft besteht Bewährungsprobe / Seit Anfang 2006 in Betrieb (2006) 0.01
    0.0053100465 = product of:
      0.021240186 = sum of:
        0.021240186 = product of:
          0.042480372 = sum of:
            0.042480372 = weight(_text_:22 in 5991) [ClassicSimilarity], result of:
              0.042480372 = score(doc=5991,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.2708308 = fieldWeight in 5991, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5991)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    8. 7.2006 21:06:22
  5. Mayr, P.; Petras, V.: Building a Terminology Network for Search : the KoMoHe project (2008) 0.01
    0.0053100465 = product of:
      0.021240186 = sum of:
        0.021240186 = product of:
          0.042480372 = sum of:
            0.042480372 = weight(_text_:22 in 2618) [ClassicSimilarity], result of:
              0.042480372 = score(doc=2618,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.2708308 = fieldWeight in 2618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2618)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Lauser, B.; Johannsen, G.; Caracciolo, C.; Hage, W.R. van; Keizer, J.; Mayr, P.: Comparing human and automatic thesaurus mapping approaches in the agricultural domain (2008) 0.00
    0.0037928906 = product of:
      0.015171562 = sum of:
        0.015171562 = product of:
          0.030343125 = sum of:
            0.030343125 = weight(_text_:22 in 2627) [ClassicSimilarity], result of:
              0.030343125 = score(doc=2627,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.19345059 = fieldWeight in 2627, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2627)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas