Search (10 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × year_i:[2010 TO 2020}
  1. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.12
    0.115814 = product of:
      0.231628 = sum of:
        0.21342213 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.21342213 = score(doc=563,freq=2.0), product of:
            0.3797425 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04479146 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.018205874 = product of:
          0.036411747 = sum of:
            0.036411747 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.036411747 = score(doc=563,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  2. Bedathur, S.; Narang, A.: Mind your language : effects of spoken query formulation on retrieval effectiveness (2013) 0.04
    0.044713248 = product of:
      0.17885299 = sum of:
        0.17885299 = weight(_text_:engines in 1150) [ClassicSimilarity], result of:
          0.17885299 = score(doc=1150,freq=8.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.7858995 = fieldWeight in 1150, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1150)
      0.25 = coord(1/4)
    
    Abstract
    Voice search is becoming a popular mode for interacting with search engines. As a result, research has gone into building better voice transcription engines, interfaces, and search engines that better handle inherent verbosity of queries. However, when one considers its use by non- native speakers of English, another aspect that becomes important is the formulation of the query by users. In this paper, we present the results of a preliminary study that we conducted with non-native English speakers who formulate queries for given retrieval tasks. Our results show that the current search engines are sensitive in their rankings to the query formulation, and thus highlights the need for developing more robust ranking methods.
  3. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.02
    0.022583602 = product of:
      0.09033441 = sum of:
        0.09033441 = weight(_text_:engines in 2861) [ClassicSimilarity], result of:
          0.09033441 = score(doc=2861,freq=4.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.39693922 = fieldWeight in 2861, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
      0.25 = coord(1/4)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  4. Perovsek, M.; Kranjca, J.; Erjaveca, T.; Cestnika, B.; Lavraca, N.: TextFlows : a visual programming platform for text mining and natural language processing (2016) 0.02
    0.02255545 = product of:
      0.0902218 = sum of:
        0.0902218 = product of:
          0.1804436 = sum of:
            0.1804436 = weight(_text_:programming in 2697) [ClassicSimilarity], result of:
              0.1804436 = score(doc=2697,freq=4.0), product of:
                0.29361802 = queryWeight, product of:
                  6.5552235 = idf(docFreq=170, maxDocs=44218)
                  0.04479146 = queryNorm
                0.6145522 = fieldWeight in 2697, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  6.5552235 = idf(docFreq=170, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2697)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Science of computer programming. In Press, 2016
  5. Kajanan, S.; Bao, Y.; Datta, A.; VanderMeer, D.; Dutta, K.: Efficient automatic search query formulation using phrase-level analysis (2014) 0.01
    0.012775214 = product of:
      0.051100858 = sum of:
        0.051100858 = weight(_text_:engines in 1264) [ClassicSimilarity], result of:
          0.051100858 = score(doc=1264,freq=2.0), product of:
            0.22757743 = queryWeight, product of:
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.04479146 = queryNorm
            0.22454272 = fieldWeight in 1264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.080822 = idf(docFreq=746, maxDocs=44218)
              0.03125 = fieldNorm(doc=1264)
      0.25 = coord(1/4)
    
    Abstract
    Over the past decade, the volume of information available digitally over the Internet has grown enormously. Technical developments in the area of search, such as Google's Page Rank algorithm, have proved so good at serving relevant results that Internet search has become integrated into daily human activity. One can endlessly explore topics of interest simply by querying and reading through the resulting links. Yet, although search engines are well known for providing relevant results based on users' queries, users do not always receive the results they are looking for. Google's Director of Research describes clickstream evidence of frustrated users repeatedly reformulating queries and searching through page after page of results. Given the general quality of search engine results, one must consider the possibility that the frustrated user's query is not effective; that is, it does not describe the essence of the user's interest. Indeed, extensive research into human search behavior has found that humans are not very effective at formulating good search queries that describe what they are interested in. Ideally, the user should simply point to a portion of text that sparked the user's interest, and a system should automatically formulate a search query that captures the essence of the text. In this paper, we describe an implemented system that provides this capability. We first describe how our work differs from existing work in automatic query formulation, and propose a new method for improved quantification of the relevance of candidate search terms drawn from input text using phrase-level analysis. We then propose an implementable method designed to provide relevant queries based on a user's text input. We demonstrate the quality of our results and performance of our system through experimental studies. Our results demonstrate that our system produces relevant search terms with roughly two-thirds precision and recall compared to search terms selected by experts, and that typical users find significantly more relevant results (31% more relevant) more quickly (64% faster) using our system than self-formulated search queries. Further, we show that our implementation can scale to request loads of up to 10 requests per second within current online responsiveness expectations (<2-second response times at the highest loads tested).
  6. Lezius, W.: Morphy - Morphologie und Tagging für das Deutsche (2013) 0.01
    0.0060686246 = product of:
      0.024274498 = sum of:
        0.024274498 = product of:
          0.048548996 = sum of:
            0.048548996 = weight(_text_:22 in 1490) [ClassicSimilarity], result of:
              0.048548996 = score(doc=1490,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.30952093 = fieldWeight in 1490, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1490)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2015 9:30:24
  7. Lawrie, D.; Mayfield, J.; McNamee, P.; Oard, P.W.: Cross-language person-entity linking from 20 languages (2015) 0.00
    0.0045514684 = product of:
      0.018205874 = sum of:
        0.018205874 = product of:
          0.036411747 = sum of:
            0.036411747 = weight(_text_:22 in 1848) [ClassicSimilarity], result of:
              0.036411747 = score(doc=1848,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.23214069 = fieldWeight in 1848, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1848)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The goal of entity linking is to associate references to an entity that is found in unstructured natural language content to an authoritative inventory of known entities. This article describes the construction of 6 test collections for cross-language person-entity linking that together span 22 languages. Fully automated components were used together with 2 crowdsourced validation stages to affordably generate ground-truth annotations with an accuracy comparable to that of a completely manual process. The resulting test collections each contain between 642 (Arabic) and 2,361 (Romanian) person references in non-English texts for which the correct resolution in English Wikipedia is known, plus a similar number of references for which no correct resolution into English Wikipedia is believed to exist. Fully automated cross-language person-name linking experiments with 20 non-English languages yielded a resolution accuracy of between 0.84 (Serbian) and 0.98 (Romanian), which compares favorably with previously reported cross-language entity linking results for Spanish.
  8. Fóris, A.: Network theory and terminology (2013) 0.00
    0.0037928906 = product of:
      0.015171562 = sum of:
        0.015171562 = product of:
          0.030343125 = sum of:
            0.030343125 = weight(_text_:22 in 1365) [ClassicSimilarity], result of:
              0.030343125 = score(doc=1365,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.19345059 = fieldWeight in 1365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1365)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    2. 9.2014 21:22:48
  9. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.00
    0.0030343123 = product of:
      0.012137249 = sum of:
        0.012137249 = product of:
          0.024274498 = sum of:
            0.024274498 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.024274498 = score(doc=4217,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2018 11:32:44
  10. Deventer, J.P. van; Kruger, C.J.; Johnson, R.D.: Delineating knowledge management through lexical analysis : a retrospective (2015) 0.00
    0.0026550232 = product of:
      0.010620093 = sum of:
        0.010620093 = product of:
          0.021240186 = sum of:
            0.021240186 = weight(_text_:22 in 3807) [ClassicSimilarity], result of:
              0.021240186 = score(doc=3807,freq=2.0), product of:
                0.15685207 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04479146 = queryNorm
                0.1354154 = fieldWeight in 3807, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3807)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22