Search (11 results, page 1 of 1)

  • × author_ss:"Broughton, V."
  1. Broughton, V.: Notational expressivity : the case for and against the representation of internal subject structure in notational coding (1999) 0.02
    0.021289835 = product of:
      0.08515934 = sum of:
        0.08515934 = sum of:
          0.048422787 = weight(_text_:methods in 6392) [ClassicSimilarity], result of:
            0.048422787 = score(doc=6392,freq=2.0), product of:
              0.18168657 = queryWeight, product of:
                4.0204134 = idf(docFreq=2156, maxDocs=44218)
                0.045191016 = queryNorm
              0.26651827 = fieldWeight in 6392, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.0204134 = idf(docFreq=2156, maxDocs=44218)
                0.046875 = fieldNorm(doc=6392)
          0.03673655 = weight(_text_:22 in 6392) [ClassicSimilarity], result of:
            0.03673655 = score(doc=6392,freq=2.0), product of:
              0.15825124 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045191016 = queryNorm
              0.23214069 = fieldWeight in 6392, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=6392)
      0.25 = coord(1/4)
    
    Abstract
    The ways in which notation can be used to express the content of documents to which it relates are various. At the most superficial level notation can correspond to the hierarchical structure of the schedules or link to literal components. The notation of compound concepts can express the structure and composition of the compound, and systems exist in which symbols denote the functional roles of the constituent elements and the relationships between them. At the highest level notation can be used to mirror the actual structure of those entities which it represents, as in the case of mathematical systems or chemical compounds. Methods of displaying these structures are examined, and the practicality in a documentary context is questioned, with particular reference to recent revision work on the chemistry class of the Bliss Bibliographic Classification 2nd edition (BC2)
    Date
    10. 8.2001 13:22:14
  2. Broughton, V.: ¬The revision process in UDC : an examination of the systematic auxiliary of 'Point-of-View' using facet-analytical methods (1998) 0.01
    0.012105697 = product of:
      0.048422787 = sum of:
        0.048422787 = product of:
          0.096845575 = sum of:
            0.096845575 = weight(_text_:methods in 6367) [ClassicSimilarity], result of:
              0.096845575 = score(doc=6367,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.53303653 = fieldWeight in 6367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6367)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  3. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.009184138 = product of:
      0.03673655 = sum of:
        0.03673655 = product of:
          0.0734731 = sum of:
            0.0734731 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.0734731 = score(doc=6048,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 9.2007 15:41:14
  4. Broughton, V.: Structural, linguistic and mathematical elements in indexing languages and search engines : implications for the use of index languages in electronic and non-LIS environments (2000) 0.01
    0.0071333502 = product of:
      0.028533401 = sum of:
        0.028533401 = product of:
          0.057066802 = sum of:
            0.057066802 = weight(_text_:methods in 96) [ClassicSimilarity], result of:
              0.057066802 = score(doc=96,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31409478 = fieldWeight in 96, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=96)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The paper looks at ways in which traditional classification and indexing tools have dealt with the relationships between constituent terms; variations in these are examined and compared with the methods used in machine searching, particularly of the Internet and World Wide Web. Apparent correspondences with features of index languages are identified, and further methods of applying classification and indexing theory to machine retrieval are proposed. There are various ways in which indexing and retrieval systems, both conventional and electronic, deal with the problem of searching for documents on a subject basis, and various approaches to the analysis and processing of a query. There appear to be three basic models; the taxonomic or structural system, in which the user is offered a map of the `universe of knowledge'; the language based system, which offers a vocabulary of the subject and a grammar for dealing with compound statements; and the mathematical model using the language of symbolic logic or the algebra of set theory
  5. Broughton, V.: Henry Evelyn Bliss : the other immortal or a prophet without honour? (2008) 0.01
    0.005357414 = product of:
      0.021429656 = sum of:
        0.021429656 = product of:
          0.042859312 = sum of:
            0.042859312 = weight(_text_:22 in 2550) [ClassicSimilarity], result of:
              0.042859312 = score(doc=2550,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.2708308 = fieldWeight in 2550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2550)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    9. 2.1997 18:44:22
  6. Broughton, V.: ¬The fall and rise of knowledge organization : new dimensions of subject description and retrieval (2010) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 3940) [ClassicSimilarity], result of:
              0.040352322 = score(doc=3940,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 3940, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3940)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this editorial is to introduce the selected Proceedings of the 1st National Conference of ISKO UK, the UK Chapter of the International Society for Knowledge Organization. It aims to provide some background for the group, and place it within the context of the recent history of information organization and retrieval in subject domains. Design/methodology/approach - The paper introduces a selection of papers delivered at the 1st National Conference of the UK Chapter of the International Society for Knowledge Organization. Findings - The field of knowledge organization is lively and progressive, and researchers and practitioners in many sectors are actively engaged with it, despite its apparent decline in LIS education. New communities of interest may use different terms to describe this work, but there is much common ground, and a growing convergence of ideas and methods. Originality/value - The value of existing theory is now more widely recognised, and the importance of structured knowledge organization systems and vocabularies in retrieval is generally acknowledged. It is to be hoped that these important areas of information practice and research will soon be restored to their former place in professional education.
  7. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 2874) [ClassicSimilarity], result of:
              0.040352322 = score(doc=2874,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 2874, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  8. Broughton, V.: ¬The respective roles of intellectual creativity and automation in representing diversity : human and machine generated bias (2019) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 5728) [ClassicSimilarity], result of:
              0.040352322 = score(doc=5728,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 5728, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5728)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The paper traces the development of the discussion around ethical issues in artificial intelligence, and considers the way in which humans have affected the knowledge bases used in machine learning. The phenomenon of bias or discrimination in machine ethics is seen as inherited from humans, either through the use of biased data or through the semantics inherent in intellectually- built tools sourced by intelligent agents. The kind of biases observed in AI are compared with those identified in the field of knowledge organization, using religious adherents as an example of a community potentially marginalized by bias. A practical demonstration is given of apparent religious prejudice inherited from source material in a large database deployed widely in computational linguistics and automatic indexing. Methods to address the problem of bias are discussed, including the modelling of the moral process on neuroscientific understanding of brain function. The question is posed whether it is possible to model religious belief in a similar way, so that robots of the future may have both an ethical and a religious sense and themselves address the problem of prejudice.
  9. Broughton, V.: Science and knowledge organization : an editorial (2021) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 593) [ClassicSimilarity], result of:
              0.040352322 = score(doc=593,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=593)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this article is to identify the most important factors and features in the evolution of thesauri and ontologies through a dialectic model. This model relies on a dialectic process or idea which could be discovered via a dialectic method. This method has focused on identifying the logical relationship between a beginning proposition, or an idea called a thesis, a negation of that idea called the antithesis, and the result of the conflict between the two ideas, called a synthesis. During the creation of knowl­edge organization systems (KOSs), the identification of logical relations between different ideas has been made possible through the consideration and use of the most influential methods and tools such as dictionaries, Roget's Thesaurus, thesaurus, micro-, macro- and metathesauri, ontology, lower, middle and upper level ontologies. The analysis process has adapted a historical methodology, more specifically a dialectic method and documentary method as the reasoning process. This supports our arguments and synthesizes a method for the analysis of research results. Confirmed by the research results, the principle of unity has shown to be the most important factor in the development and evolution of the structure of knowl­edge organization systems and their types. There are various types of unity when considering the analysis of logical relations. These include the principle of unity of alphabetical order, unity of science, semantic unity, structural unity and conceptual unity. The results have clearly demonstrated a movement from plurality to unity in the assembling of the complex structure of knowl­edge organization systems to increase information and knowl­edge storage and retrieval performance.
  10. McIlwaine, I.C.; Broughton, V.: ¬The Classification Research Group : then and now (2000) 0.00
    0.004035232 = product of:
      0.016140928 = sum of:
        0.016140928 = product of:
          0.032281857 = sum of:
            0.032281857 = weight(_text_:methods in 6089) [ClassicSimilarity], result of:
              0.032281857 = score(doc=6089,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.17767884 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The genesis of the Group: In 1948, as part of the post-war renewal of library services in the United Kingdom, the Royal Society organized a Conference on Scientific Information.' What, at the time, must have seemed a minute part of the grand plan, but was later to have a transforming effect on the theory of knowledge organization throughout the remainder of the century, was the setting up of a standing committee of a small group of specialists to investigate the organization and retrieval of scientific information. In 1950, the secretary of that committee, J.D. Bernal, suggested that it might be appropriate to ask a group of librarians to do a study of the problem. After a couple of years of informal discussion it was agreed, in February 1952, to form a Classification Research Group - the CRG as it has become known to subsequent generations. The Group published a brief corporate statement of its views in the Library Association Record in June 1953 and submitted a memorandum to the Library Association Research Committee in May 1955, entitled "The need for a faceted classification as the basis of all methods of information retrieval". This memorandum was published in the proceedings of what has become known as the "Dorking Conference" in 1957. Of the original fifteen members, four still belong to the Group, three of whom are in regular attendance: Eric Coates, Douglas Foskett and Jack Mills. Brian Vickery ceased attending regularly in the 1960s but has retained his interest in their doings: he was present at the 150th celebratory meeting in 1984 and played an active part in the "Dorking revisited" conference held in 1997. The stated aim of the Group was 'To review the basic principles of bibliographic classification, unhampered by allegiance to any particular published scheme' and it can truly be stated that the work of its members has had a fundamental influence on the teaching and practice of information retrieval. It is paradoxical that this collection of people has exerted such a strong theoretical sway because their aims were from the outset and remain essentially practical. This fact is sometimes overlooked in the literature on knowledge organization: there is a tendency to get carried away, and for researchers of today to concentrate so hard on what might be that they overlook what is needed, useful and practical - the entire objective of any retrieval system.
  11. Broughton, V.; Slavic, A.: Building a faceted classification for the humanities : principles and procedures (2007) 0.00
    0.004035232 = product of:
      0.016140928 = sum of:
        0.016140928 = product of:
          0.032281857 = sum of:
            0.032281857 = weight(_text_:methods in 2875) [ClassicSimilarity], result of:
              0.032281857 = score(doc=2875,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.17767884 = fieldWeight in 2875, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2875)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach - Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings - In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications - The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications - Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value - As far as the authors are aware there is no comparable research in this area.