Search (7 results, page 1 of 1)

  • × author_ss:"Liu, Y."
  1. Liu, Y.; Li, W.; Huang, Z.; Fang, Q.: ¬A fast method based on multiple clustering for name disambiguation in bibliographic citations (2015) 0.01
    0.0071333502 = product of:
      0.028533401 = sum of:
        0.028533401 = product of:
          0.057066802 = sum of:
            0.057066802 = weight(_text_:methods in 1672) [ClassicSimilarity], result of:
              0.057066802 = score(doc=1672,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31409478 = fieldWeight in 1672, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1672)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Name ambiguity in the context of bibliographic citation affects the quality of services in digital libraries. Previous methods are not widely applied in practice because of their high computational complexity and their strong dependency on excessive attributes, such as institutional affiliation, research area, address, etc., which are difficult to obtain in practice. To solve this problem, we propose a novel coarse-to-fine framework for name disambiguation which sequentially employs 3 common and easily accessible attributes (i.e., coauthor name, article title, and publication venue). Our proposed framework is based on multiple clustering and consists of 3 steps: (a) clustering articles by coauthorship and obtaining rough clusters, that is fragments; (b) clustering fragments obtained in step 1 by title information and getting bigger fragments; (c) and clustering fragments obtained in step 2 by the latent relations among venues. Experimental results on a Digital Bibliography and Library Project (DBLP) data set show that our method outperforms the existing state-of-the-art methods by 2.4% to 22.7% on the average pairwise F1 score and is 10 to 100 times faster in terms of execution time.
  2. Liu, Y.: Precision One MediaSource : film/video locator on CD-ROM (1995) 0.01
    0.006122759 = product of:
      0.024491036 = sum of:
        0.024491036 = product of:
          0.048982073 = sum of:
            0.048982073 = weight(_text_:22 in 7744) [ClassicSimilarity], result of:
              0.048982073 = score(doc=7744,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.30952093 = fieldWeight in 7744, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7744)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 6.1997 16:34:51
  3. Liu, Y.; Du, F.; Sun, J.; Silva, T.; Jiang, Y.; Zhu, T.: Identifying social roles using heterogeneous features in online social networks (2019) 0.01
    0.0060528484 = product of:
      0.024211394 = sum of:
        0.024211394 = product of:
          0.048422787 = sum of:
            0.048422787 = weight(_text_:methods in 5293) [ClassicSimilarity], result of:
              0.048422787 = score(doc=5293,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.26651827 = fieldWeight in 5293, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5293)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Role analysis plays an important role when exploring social media and knowledge-sharing platforms for designing marking strategies. However, current methods in role analysis have overlooked content generated by users (e.g., posts) in social media and hence focus more on user behavior analysis. The user-generated content is very important for characterizing users. In this paper, we propose a novel method which integrates both user behavior and posted content by users to identify roles in online social networks. The proposed method models a role as a joint distribution of Gaussian distribution and multinomial distribution, which represent user behavioral feature and content feature respectively. The proposed method can be used to determine the number of roles concerned automatically. The experimental results show that the proposed method can be used to identify various roles more effectively and to get more insights on such characteristics.
  4. Wu, Y.; Liu, Y.; Tsai, Y.-H.R.; Yau, S.-T.: Investigating the role of eye movements and physiological signals in search satisfaction prediction using geometric analysis (2019) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 5382) [ClassicSimilarity], result of:
              0.040352322 = score(doc=5382,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 5382, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5382)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Two general challenges faced by data analysis are the existence of noise and the extraction of meaningful information from collected data. In this study, we used a multiscale framework to reduce the effects caused by noise and to extract explainable geometric properties to characterize finite metric spaces. We conducted lab experiments that integrated the use of eye-tracking, electrodermal activity (EDA), and user logs to explore users' information-seeking behaviors on search engine result pages (SERPs). Experimental results of 1,590 search queries showed that the proposed strategies effectively predicted query-level user satisfaction using EDA and eye-tracking data. The bootstrap analysis showed that combining EDA and eye-tracking data with user behavior data extracted from user logs led to a significantly better linear model fit than using user behavior data alone. Furthermore, cross-user and cross-task validations showed that our methods can be generalized to different search engine users performing different preassigned tasks.
  5. Sun, J.; Zhu, M.; Jiang, Y.; Liu, Y.; Wu, L.L.: Hierarchical attention model for personalized tag recommendation : peer effects on information value perception (2021) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 98) [ClassicSimilarity], result of:
              0.040352322 = score(doc=98,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 98, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=98)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    With the development of Web-based social networks, many personalized tag recommendation approaches based on multi-information have been proposed. Due to the differences in users' preferences, different users care about different kinds of information. In the meantime, different elements within each kind of information are differentially informative for user tagging behaviors. In this context, how to effectively integrate different elements and different information separately becomes a key part of tag recommendation. However, the existing methods ignore this key part. In order to address this problem, we propose a deep neural network for tag recommendation. Specifically, we model two important attentive aspects with a hierarchical attention model. For different user-item pairs, the bottom layered attention network models the influence of different elements on the features representation of the information while the top layered attention network models the attentive scores of different information. To verify the effectiveness of the proposed method, we conduct extensive experiments on two real-world data sets. The results show that using attention network and different kinds of information can significantly improve the performance of the recommendation model, and verify the effectiveness and superiority of our proposed model.
  6. Liu, Y.; Qin, C.; Ma, X.; Liang, H.: Serendipity in human information behavior : a systematic review (2022) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 603) [ClassicSimilarity], result of:
              0.040352322 = score(doc=603,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=603)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose Serendipitous information discovery has become a unique and important approach to discovering and obtaining information, which has aroused a growing interest for serendipity in human information behavior. Despite numerous publications, few have systematically provided an overview of current state of serendipity research. Consequently, researchers and practitioners are less able to make effective use of existing achievements, which limits them from making advancements in this domain. Against this backdrop, we performed a systematic literature review to explore the world of serendipity and to recapitulate the current states of different research topics. Design/methodology/approach Guided by a prior designed review protocol, this paper conducted both automatic and manual search for available studies published from January 1990 to December 2020 on seven databases. A total of 207 serendipity studies closely related to human information behavior form the literature pool. Findings We provide an overview of distinct aspects of serendipity, that is research topics, potential benefits, related concepts, theoretical models, contextual factors and data collection methods. Based on these findings, this review reveals limitations and gaps in the current serendipity research and proposes an agenda for future research directions. Originality/value By analyzing current serendipity research, developing a knowledge framework and providing a research agenda, this review is of significance for researchers who want to find new research questions or re-align current work, for beginners who need to quickly understand serendipity, and for practitioners who seek to cultivate serendipity in information environments.
  7. Qin, C.; Liu, Y.; Mou, J.; Chen, J.: User adoption of a hybrid social tagging approach in an online knowledge community (2019) 0.00
    0.0038267244 = product of:
      0.015306897 = sum of:
        0.015306897 = product of:
          0.030613795 = sum of:
            0.030613795 = weight(_text_:22 in 5492) [ClassicSimilarity], result of:
              0.030613795 = score(doc=5492,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.19345059 = fieldWeight in 5492, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5492)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22