Search (11 results, page 1 of 1)

  • × author_ss:"Robertson, S.E."
  1. MacFarlane, A.; Robertson, S.E.; McCann, J.A.: Parallel computing for passage retrieval (2004) 0.03
    0.028386448 = product of:
      0.11354579 = sum of:
        0.11354579 = sum of:
          0.064563714 = weight(_text_:methods in 5108) [ClassicSimilarity], result of:
            0.064563714 = score(doc=5108,freq=2.0), product of:
              0.18168657 = queryWeight, product of:
                4.0204134 = idf(docFreq=2156, maxDocs=44218)
                0.045191016 = queryNorm
              0.35535768 = fieldWeight in 5108, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.0204134 = idf(docFreq=2156, maxDocs=44218)
                0.0625 = fieldNorm(doc=5108)
          0.048982073 = weight(_text_:22 in 5108) [ClassicSimilarity], result of:
            0.048982073 = score(doc=5108,freq=2.0), product of:
              0.15825124 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045191016 = queryNorm
              0.30952093 = fieldWeight in 5108, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5108)
      0.25 = coord(1/4)
    
    Abstract
    In this paper methods for both speeding up passage processing and examining more passages using parallel computers are explored. The number of passages processed are varied in order to examine the effect on retrieval effectiveness and efficiency. The particular algorithm applied has previously been used to good effect in Okapi experiments at TREC. This algorithm and the mechanism for applying parallel computing to speed up processing are described.
    Date
    20. 1.2007 18:30:22
  2. Hancock-Beaulieu, M.; Robertson, S.E.; Neilson, C.: Evaluation of online catalogues : an assessment of methods (1990) 0.01
    0.014123313 = product of:
      0.056493253 = sum of:
        0.056493253 = product of:
          0.112986505 = sum of:
            0.112986505 = weight(_text_:methods in 5262) [ClassicSimilarity], result of:
              0.112986505 = score(doc=5262,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.62187594 = fieldWeight in 5262, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5262)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  3. Robertson, S.E.; Sparck Jones, K.: Relevance weighting of search terms (1976) 0.01
    0.011413361 = product of:
      0.045653444 = sum of:
        0.045653444 = product of:
          0.09130689 = sum of:
            0.09130689 = weight(_text_:methods in 71) [ClassicSimilarity], result of:
              0.09130689 = score(doc=71,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.5025517 = fieldWeight in 71, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0625 = fieldNorm(doc=71)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Examines statistical techniques for exploiting relevance information to weight search terms. These techniques are presented as a natural extension of weighting methods using information about the distribution of index terms in documents in general. A series of relevance weighting functions is derived and is justified by theoretical considerations. In particular, it is shown that specific weighted search methods are implied by a general probabilistic theory of retrieval. Different applications of relevance weighting are illustrated by experimental results for test collections
  4. Robertson, S.E.: OKAPI at TREC-3 (1995) 0.01
    0.009986691 = product of:
      0.039946765 = sum of:
        0.039946765 = product of:
          0.07989353 = sum of:
            0.07989353 = weight(_text_:methods in 5694) [ClassicSimilarity], result of:
              0.07989353 = score(doc=5694,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.43973273 = fieldWeight in 5694, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5694)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Reports text information retrieval experiments performed as part of the 3 rd round of Text Retrieval Conferences (TREC) using the Okapi online catalogue system at City University, UK. The emphasis in TREC-3 was: further refinement of term weighting functions; an investigation of run time passage determination and searching; expansion of ad hoc queries by terms extracted from the top documents retrieved by a trial search; new methods for choosing query expansion terms after relevance feedback, now split into methods of ranking terms prior to selection and subsequent selection procedures; and the development of a user interface procedure within the new TREC interactive search framework
  5. Huang, X.; Robertson, S.E.: Application of probilistic methods to Chinese text retrieval (1997) 0.01
    0.009986691 = product of:
      0.039946765 = sum of:
        0.039946765 = product of:
          0.07989353 = sum of:
            0.07989353 = weight(_text_:methods in 4706) [ClassicSimilarity], result of:
              0.07989353 = score(doc=4706,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.43973273 = fieldWeight in 4706, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4706)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Discusses the use of text retrieval methods based on the probabilistic model with Chinese language material. Since Chinese text has no natural word boundaries, either a dictionary based word segmentation method must be applied to the text, or indexing and searching must be done in terms of single Chinese characters. In either case, it becomes important to have a good way of dealing with phrases or contoguous strings of characters; the probabilistic model does not at present have such a facility. Proposes some ad hoc modifications of the probabilistic weighting function and matching method for this purpose
  6. MacFarlane, A.; McCann, J.A.; Robertson, S.E.: Parallel methods for the generation of partitioned inverted files (2005) 0.01
    0.0085600205 = product of:
      0.034240082 = sum of:
        0.034240082 = product of:
          0.068480164 = sum of:
            0.068480164 = weight(_text_:methods in 651) [ClassicSimilarity], result of:
              0.068480164 = score(doc=651,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.37691376 = fieldWeight in 651, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=651)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The generation of inverted indexes is one of the most computationally intensive activities for information retrieval systems: indexing large multi-gigabyte text databases can take many hours or even days to complete. We examine the generation of partitioned inverted files in order to speed up the process of indexing. Two types of index partitions are investigated: TermId and DocId. Design/methodology/approach - We use standard measures used in parallel computing such as speedup and efficiency to examine the computing results and also the space costs of our trial indexing experiments. Findings - The results from runs on both partitioning methods are compared and contrasted, concluding that DocId is the more efficient method. Practical implications - The practical implications are that the DocId partitioning method would in most circumstances be used for distributing inverted file data in a parallel computer, particularly if indexing speed is the primary consideration. Originality/value - The paper is of value to database administrators who manage large-scale text collections, and who need to use parallel computing to implement their text retrieval services.
  7. Vechtomova, O.; Robertson, S.E.: ¬A domain-independent approach to finding related entities (2012) 0.01
    0.0085600205 = product of:
      0.034240082 = sum of:
        0.034240082 = product of:
          0.068480164 = sum of:
            0.068480164 = weight(_text_:methods in 2733) [ClassicSimilarity], result of:
              0.068480164 = score(doc=2733,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.37691376 = fieldWeight in 2733, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2733)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We propose an approach to the retrieval of entities that have a specific relationship with the entity given in a query. Our research goal is to investigate whether related entity finding problem can be addressed by combining a measure of relatedness of candidate answer entities to the query, and likelihood that the candidate answer entity belongs to the target entity category specified in the query. An initial list of candidate entities, extracted from top ranked documents retrieved for the query, is refined using a number of statistical and linguistic methods. The proposed method extracts the category of the target entity from the query, identifies instances of this category as seed entities, and computes similarity between candidate and seed entities. The evaluation was conducted on the Related Entity Finding task of the Entity Track of TREC 2010, as well as the QA list questions from TREC 2005 and 2006. Evaluation results demonstrate that the proposed methods are effective in finding related entities.
  8. Robertson, S.E.; Sparck Jones, K.: Simple, proven approaches to text retrieval (1997) 0.01
    0.0071333502 = product of:
      0.028533401 = sum of:
        0.028533401 = product of:
          0.057066802 = sum of:
            0.057066802 = weight(_text_:methods in 4532) [ClassicSimilarity], result of:
              0.057066802 = score(doc=4532,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31409478 = fieldWeight in 4532, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4532)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This technical note describes straightforward techniques for document indexing and retrieval that have been solidly established through extensive testing and are easy to apply. They are useful for many different types of text material, are viable for very large files, and have the advantage that they do not require special skills or training for searching, but are easy for end users. The document and text retrieval methods described here have a sound theoretical basis, are well established by extensive testing, and the ideas involved are now implemented in some commercial retrieval systems. Testing in the last few years has, in particular, shown that the methods presented here work very well with full texts, not only title and abstracts, and with large files of texts containing three quarters of a million documents. These tests, the TREC Tests (see Harman 1993 - 1997; IP&M 1995), have been rigorous comparative evaluations involving many different approaches to information retrieval. These techniques depend an the use of simple terms for indexing both request and document texts; an term weighting exploiting statistical information about term occurrences; an scoring for request-document matching, using these weights, to obtain a ranked search output; and an relevance feedback to modify request weights or term sets in iterative searching. The normal implementation is via an inverted file organisation using a term list with linked document identifiers, plus counting data, and pointers to the actual texts. The user's request can be a word list, phrases, sentences or extended text.
  9. MacFarlane, A.; McCann, J.A.; Robertson, S.E.: Parallel methods for the update of partitioned inverted files (2007) 0.01
    0.0071333502 = product of:
      0.028533401 = sum of:
        0.028533401 = product of:
          0.057066802 = sum of:
            0.057066802 = weight(_text_:methods in 819) [ClassicSimilarity], result of:
              0.057066802 = score(doc=819,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31409478 = fieldWeight in 819, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=819)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - An issue that tends to be ignored in information retrieval is the issue of updating inverted files. This is largely because inverted files were devised to provide fast query service, and much work has been done with the emphasis strongly on queries. This paper aims to study the effect of using parallel methods for the update of inverted files in order to reduce costs, by looking at two types of partitioning for inverted files: document identifier and term identifier. Design/methodology/approach - Raw update service and update with query service are studied with these partitioning schemes using an incremental update strategy. The paper uses standard measures used in parallel computing such as speedup to examine the computing results and also the costs of reorganising indexes while servicing transactions. Findings - Empirical results show that for both transaction processing and index reorganisation the document identifier method is superior. However, there is evidence that the term identifier partitioning method could be useful in a concurrent transaction processing context. Practical implications - There is an increasing need to service updates, which is now becoming a requirement of inverted files (for dynamic collections such as the web), demonstrating that a shift in requirements of inverted file maintenance is needed from the past. Originality/value - The paper is of value to database administrators who manage large-scale and dynamic text collections, and who need to use parallel computing to implement their text retrieval services.
  10. Robertson, S.E.; Walker, S.; Beaulieu, M.: Laboratory experiments with Okapi : participation in the TREC programme (1997) 0.01
    0.0070616566 = product of:
      0.028246626 = sum of:
        0.028246626 = product of:
          0.056493253 = sum of:
            0.056493253 = weight(_text_:methods in 2216) [ClassicSimilarity], result of:
              0.056493253 = score(doc=2216,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31093797 = fieldWeight in 2216, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2216)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Briefly reviews the history of laboratory testing of information retrieval systems, focusing on the idea of a general purpose test collection of documents, queries and relevance judgements. Gives an overview of the methods used in TREC (Text Retrieval Conference) which is concerned with an ideal test collection, and discusses the Okapi team's participation in TREC. Also discusses some of the issues surrounding the difficult problem of interactive evaluation in TREC. The reconciliation of the requirements of the laboratory context with the concerns of interactive retrieval has a long way to go
  11. Robertson, S.E.; Walker, S.; Hancock-Beaulieu, M.M.: Large test collection experiments of an operational, interactive system : OKAPI at TREC (1995) 0.01
    0.0070616566 = product of:
      0.028246626 = sum of:
        0.028246626 = product of:
          0.056493253 = sum of:
            0.056493253 = weight(_text_:methods in 6964) [ClassicSimilarity], result of:
              0.056493253 = score(doc=6964,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31093797 = fieldWeight in 6964, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6964)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The Okapi system has been used in a series of experiments on the TREC collections, investiganting probabilistic methods, relevance feedback, and query expansion, and interaction issues. Some new probabilistic models have been developed, resulting in simple weigthing functions that take account of document length and within document and within query term frequency. All have been shown to be beneficial when based on large quantities of relevance data as in the routing task. Interaction issues are much more difficult to evaluate in the TREC framework, and no benefits have yet been demonstrated from feedback based on small numbers of 'relevant' items identified by intermediary searchers