Search (7 results, page 1 of 1)

  • × author_ss:"Sun, A."
  1. Sun, A.; Bhowmick, S.S.; Nguyen, K.T.N.; Bai, G.: Tag-based social image retrieval : an empirical evaluation (2011) 0.01
    0.0071333502 = product of:
      0.028533401 = sum of:
        0.028533401 = product of:
          0.057066802 = sum of:
            0.057066802 = weight(_text_:methods in 4938) [ClassicSimilarity], result of:
              0.057066802 = score(doc=4938,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31409478 = fieldWeight in 4938, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4938)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Tags associated with social images are valuable information source for superior image search and retrieval experiences. Although various heuristics are valuable to boost tag-based search for images, there is a lack of general framework to study the impact of these heuristics. Specifically, the task of ranking images matching a given tag query based on their associated tags in descending order of relevance has not been well studied. In this article, we take the first step to propose a generic, flexible, and extensible framework for this task and exploit it for a systematic and comprehensive empirical evaluation of various methods for ranking images. To this end, we identified five orthogonal dimensions to quantify the matching score between a tagged image and a tag query. These five dimensions are: (i) tag relatedness to measure the degree of effectiveness of a tag describing the tagged image; (ii) tag discrimination to quantify the degree of discrimination of a tag with respect to the entire tagged image collection; (iii) tag length normalization analogous to document length normalization in web search; (iv) tag-query matching model for the matching score computation between an image tag and a query tag; and (v) query model for tag query rewriting. For each dimension, we identify a few implementations and evaluate their impact on NUS-WIDE dataset, the largest human-annotated dataset consisting of more than 269K tagged images from Flickr. We evaluated 81 single-tag queries and 443 multi-tag queries over 288 search methods and systematically compare their performances using standard metrics including Precision at top-K, Mean Average Precision (MAP), Recall, and Normalized Discounted Cumulative Gain (NDCG).
  2. Ma, Z.; Sun, A.; Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter (2013) 0.01
    0.0071333502 = product of:
      0.028533401 = sum of:
        0.028533401 = product of:
          0.057066802 = sum of:
            0.057066802 = weight(_text_:methods in 967) [ClassicSimilarity], result of:
              0.057066802 = score(doc=967,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31409478 = fieldWeight in 967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Because of Twitter's popularity and the viral nature of information dissemination on Twitter, predicting which Twitter topics will become popular in the near future becomes a task of considerable economic importance. Many Twitter topics are annotated by hashtags. In this article, we propose methods to predict the popularity of new hashtags on Twitter by formulating the problem as a classification task. We use five standard classification models (i.e., Naïve bayes, k-nearest neighbors, decision trees, support vector machines, and logistic regression) for prediction. The main challenge is the identification of effective features for describing new hashtags. We extract 7 content features from a hashtag string and the collection of tweets containing the hashtag and 11 contextual features from the social graph formed by users who have adopted the hashtag. We conducted experiments on a Twitter data set consisting of 31 million tweets from 2 million Singapore-based users. The experimental results show that the standard classifiers using the extracted features significantly outperform the baseline methods that do not use these features. Among the five classifiers, the logistic regression model performs the best in terms of the Micro-F1 measure. We also observe that contextual features are more effective than content features.
  3. Sun, A.; Lim, E.-P.; Ng, W.-K.: Performance measurement framework for hierarchical text classification (2003) 0.01
    0.0060528484 = product of:
      0.024211394 = sum of:
        0.024211394 = product of:
          0.048422787 = sum of:
            0.048422787 = weight(_text_:methods in 1808) [ClassicSimilarity], result of:
              0.048422787 = score(doc=1808,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.26651827 = fieldWeight in 1808, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1808)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Hierarchical text classification or simply hierarchical classification refers to assigning a document to one or more suitable categories from a hierarchical category space. In our literature survey, we have found that the existing hierarchical classification experiments used a variety of measures to evaluate performance. These performance measures often assume independence between categories and do not consider documents misclassified into categories that are similar or not far from the correct categories in the category tree. In this paper, we therefore propose new performance measures for hierarchicai classification. The proposed performance measures consist of category similarity measures and distance-based measures that consider the contributions of misclassified documents. Our experiments an hierarchical classification methods based an SVM classifiers and binary Naive Bayes classifiers showed that SVM classifiers perform better than Naive Bayes classifiers an Reuters-21578 collection according to the extended measures. A new classifier-centric measure called blocking measure is also defined to examine the performance of subtree classifiers in a top-down levelbased hierarchical classificatIon method.
  4. Li, C.; Sun, A.: Extracting fine-grained location with temporal awareness in tweets : a two-stage approach (2017) 0.01
    0.0057066805 = product of:
      0.022826722 = sum of:
        0.022826722 = product of:
          0.045653444 = sum of:
            0.045653444 = weight(_text_:methods in 3686) [ClassicSimilarity], result of:
              0.045653444 = score(doc=3686,freq=4.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.25127584 = fieldWeight in 3686, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3686)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Twitter has attracted billions of users for life logging and sharing activities and opinions. In their tweets, users often reveal their location information and short-term visiting histories or plans. Capturing user's short-term activities could benefit many applications for providing the right context at the right time and location. In this paper we are interested in extracting locations mentioned in tweets at fine-grained granularity, with temporal awareness. Specifically, we recognize the points-of-interest (POIs) mentioned in a tweet and predict whether the user has visited, is currently at, or will soon visit the mentioned POIs. A POI can be a restaurant, a shopping mall, a bookstore, or any other fine-grained location. Our proposed framework, named TS-Petar (Two-Stage POI Extractor with Temporal Awareness), consists of two main components: a POI inventory and a two-stage time-aware POI tagger. The POI inventory is built by exploiting the crowd wisdom of the Foursquare community. It contains both POIs' formal names and their informal abbreviations, commonly observed in Foursquare check-ins. The time-aware POI tagger, based on the Conditional Random Field (CRF) model, is devised to disambiguate the POI mentions and to resolve their associated temporal awareness accordingly. Three sets of contextual features (linguistic, temporal, and inventory features) and two labeling schema features (OP and BILOU schemas) are explored for the time-aware POI extraction task. Our empirical study shows that the subtask of POI disambiguation and the subtask of temporal awareness resolution call for different feature settings for best performance. We have also evaluated the proposed TS-Petar against several strong baseline methods. The experimental results demonstrate that the two-stage approach achieves the best accuracy and outperforms all baseline methods in terms of both effectiveness and efficiency.
  5. Li, H.; Bhowmick, S.S.; Sun, A.: AffRank: affinity-driven ranking of products in online social rating networks (2011) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 4483) [ClassicSimilarity], result of:
              0.040352322 = score(doc=4483,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 4483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4483)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Large online social rating networks (e.g., Epinions, Blippr) have recently come into being containing information related to various types of products. Typically, each product in these networks is associated with a group of members who have provided ratings and comments on it. These people form a product community. A potential member can join a product community by giving a new rating to the product. We refer to this phenomenon of a product community's ability to "attract" new members as product affinity. The knowledge of a ranked list of products based on product affinity is of much importance for implementing policies, marketing research, online advertisement, and other applications. In this article, we identify and analyze an array of features that exert effect on product affinity and propose a novel model, called AffRank, that utilizes these features to predict the future rank of products according to their affinities. Evaluated on two real-world datasets, we demonstrate the effectiveness and superior prediction quality of AffRank compared with baseline methods. Our experiments show that features such as affinity rank history, affinity evolution distance, and average rating are the most important factors affecting future rank of products. At the same time, interestingly, traditional community features (e.g., community size, member connectivity, and social context) have negligible influence on product affinities.
  6. Qu, B.; Cong, G.; Li, C.; Sun, A.; Chen, H.: ¬An evaluation of classification models for question topic categorization (2012) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 237) [ClassicSimilarity], result of:
              0.040352322 = score(doc=237,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 237, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=237)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We study the problem of question topic classification using a very large real-world Community Question Answering (CQA) dataset from Yahoo! Answers. The dataset comprises 3.9 million questions and these questions are organized into more than 1,000 categories in a hierarchy. To the best knowledge, this is the first systematic evaluation of the performance of different classification methods on question topic classification as well as short texts. Specifically, we empirically evaluate the following in classifying questions into CQA categories: (a) the usefulness of n-gram features and bag-of-word features; (b) the performance of three standard classification algorithms (naive Bayes, maximum entropy, and support vector machines); (c) the performance of the state-of-the-art hierarchical classification algorithms; (d) the effect of training data size on performance; and (e) the effectiveness of the different components of CQA data, including subject, content, asker, and the best answer. The experimental results show what aspects are important for question topic classification in terms of both effectiveness and efficiency. We believe that the experimental findings from this study will be useful in real-world classification problems.
  7. Sun, A.; Lim, E.-P.: Web unit-based mining of homepage relationships (2006) 0.00
    0.0038267244 = product of:
      0.015306897 = sum of:
        0.015306897 = product of:
          0.030613795 = sum of:
            0.030613795 = weight(_text_:22 in 5274) [ClassicSimilarity], result of:
              0.030613795 = score(doc=5274,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.19345059 = fieldWeight in 5274, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5274)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 16:18:25