Search (13 results, page 1 of 1)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.021920148 = product of:
      0.08768059 = sum of:
        0.08768059 = sum of:
          0.057066802 = weight(_text_:methods in 3739) [ClassicSimilarity], result of:
            0.057066802 = score(doc=3739,freq=4.0), product of:
              0.18168657 = queryWeight, product of:
                4.0204134 = idf(docFreq=2156, maxDocs=44218)
                0.045191016 = queryNorm
              0.31409478 = fieldWeight in 3739, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.0204134 = idf(docFreq=2156, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
          0.030613795 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
            0.030613795 = score(doc=3739,freq=2.0), product of:
              0.15825124 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045191016 = queryNorm
              0.19345059 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
      0.25 = coord(1/4)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  2. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.01
    0.0076534487 = product of:
      0.030613795 = sum of:
        0.030613795 = product of:
          0.06122759 = sum of:
            0.06122759 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.06122759 = score(doc=127,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)
  3. Loehrlein, A.; Jacob, E.K.; Lee, S.; Yang, K.: Development of heuristics in a hybrid approach to faceted classification (2006) 0.01
    0.0070616566 = product of:
      0.028246626 = sum of:
        0.028246626 = product of:
          0.056493253 = sum of:
            0.056493253 = weight(_text_:methods in 247) [ClassicSimilarity], result of:
              0.056493253 = score(doc=247,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.31093797 = fieldWeight in 247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=247)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This paper describes work in progress to identify automated methods to complement and streamline the intellectual process in the generation of faceted schemes. It reports on the development of the word pair heuristic, the suffix heuristic, and the WordNet heuristic, and how the three heuristics integrate to produce an initial organization of terms from which a classificationist can more efficiently construct a faceted vocabulary.
  4. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.006122759 = product of:
      0.024491036 = sum of:
        0.024491036 = product of:
          0.048982073 = sum of:
            0.048982073 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.048982073 = score(doc=5083,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    27. 5.2007 22:19:35
  5. Tennis, J.T.: Facets and fugit tempus : considering time's effect on faceted classification schemes (2012) 0.01
    0.006122759 = product of:
      0.024491036 = sum of:
        0.024491036 = product of:
          0.048982073 = sum of:
            0.048982073 = weight(_text_:22 in 826) [ClassicSimilarity], result of:
              0.048982073 = score(doc=826,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.30952093 = fieldWeight in 826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    2. 6.2013 18:33:22
  6. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.01
    0.005357414 = product of:
      0.021429656 = sum of:
        0.021429656 = product of:
          0.042859312 = sum of:
            0.042859312 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
              0.042859312 = score(doc=4227,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.2708308 = fieldWeight in 4227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4227)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 46(2010) no.1, S.22-43
  7. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.01
    0.005357414 = product of:
      0.021429656 = sum of:
        0.021429656 = product of:
          0.042859312 = sum of:
            0.042859312 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.042859312 = score(doc=632,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2013 11:31:25
  8. Beghtol, C.: From the universe of knowledge to the universe of concepts : the structural revolution in classification for information retrieval (2008) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 1856) [ClassicSimilarity], result of:
              0.040352322 = score(doc=1856,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 1856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1856)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    During the twentieth century, bibliographic classification theory underwent a structural revolution. The first modern bibliographic classifications were top-down systems that started at the universe of knowledge and subdivided that universe downward to minute subclasses. After the invention of faceted classification by S.R. Ranganathan, the ideal was to build bottom-up classifications that started with the universe of concepts and built upward to larger and larger faceted classes. This ideal has not been achieved, and the two kinds of classification systems are not mutually exclusive. This paper examines the process by which this structural revolution was accomplished by looking at the spread of facet theory after 1924 when Ranganathan attended the School of Librarianship, London, through selected classification textbooks that were published after that date. To this end, the paper examines the role of W.C.B. Sayers as a teacher and author of three editions of The Manual of Classification for Librarians and Bibliographers. Sayers influenced both Ranganathan and the various members of the Classification Research Group (CRG) who were his students. Further, the paper contrasts the methods of evaluating classification systems that arose between Sayers's Canons of Classification in 1915- 1916 and J. Mills's A Modern Outline of Library Classification in 1960 in order to demonstrate the speed with which one kind of classificatory structure was overtaken by another.
  9. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 2874) [ClassicSimilarity], result of:
              0.040352322 = score(doc=2874,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 2874, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  10. Barité, M.; Rauch, M.: Systematifier : in rescue of a useful tool in domain analysis (2017) 0.01
    0.0050440403 = product of:
      0.020176161 = sum of:
        0.020176161 = product of:
          0.040352322 = sum of:
            0.040352322 = weight(_text_:methods in 4142) [ClassicSimilarity], result of:
              0.040352322 = score(doc=4142,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.22209854 = fieldWeight in 4142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4142)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Literature on the systematifier is remarkably limited in knowledge organization. Dahlberg created the procedure in the seventies as a guide for the construction of classification systems and showed its applicability in systems she developed. According to her initial conception, all disciplines should be structured in the following sequence: Foundations and theories-Subjects of study-Methods-Influences-Applications-Environment. The nature of the procedure is determined in this study and the concept is situated in relation with the domain analysis methodologies. As a tool for the organization of the map of a certain domain, it is associated with a rationalist perspective and the top-down design of systems construction. It would require a reassessment of its scope in order to ensure its applicability to multidisciplinary and interdisciplinary domains. Among other conclusions, it is highlighted that the greatest potential of the systematifier is given by the fact that-as a methodological device-it can act as: i)an analyzer of a subject area; ii)an organizer of its main terms; and, iii)an identifier of links, bridges and intersection points with other knowledge areas.
  11. Kaiser, J.O.: Systematic indexing (1985) 0.00
    0.004035232 = product of:
      0.016140928 = sum of:
        0.016140928 = product of:
          0.032281857 = sum of:
            0.032281857 = weight(_text_:methods in 571) [ClassicSimilarity], result of:
              0.032281857 = score(doc=571,freq=2.0), product of:
                0.18168657 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.045191016 = queryNorm
                0.17767884 = fieldWeight in 571, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=571)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    A native of Germany and a former teacher of languages and music, Julius Otto Kaiser (1868-1927) came to the Philadelphia Commercial Museum to be its librarian in 1896. Faced with the problem of making "information" accessible, he developed a method of indexing he called systematic indexing. The first draft of his scheme, published in 1896-97, was an important landmark in the history of subject analysis. R. K. Olding credits Kaiser with making the greatest single advance in indexing theory since Charles A. Cutter and John Metcalfe eulogizes him by observing that "in sheer capacity for really scientific and logical thinking, Kaiser's was probably the best mind that has ever applied itself to subject indexing." Kaiser was an admirer of "system." By systematic indexing he meant indicating information not with natural language expressions as, for instance, Cutter had advocated, but with artificial expressions constructed according to formulas. Kaiser grudged natural language its approximateness, its vagaries, and its ambiguities. The formulas he introduced were to provide a "machinery for regularising or standardising language" (paragraph 67). Kaiser recognized three categories or "facets" of index terms: (1) terms of concretes, representing things, real or imaginary (e.g., money, machines); (2) terms of processes, representing either conditions attaching to things or their actions (e.g., trade, manufacture); and (3) terms of localities, representing, for the most part, countries (e.g., France, South Africa). Expressions in Kaiser's index language were called statements. Statements consisted of sequences of terms, the syntax of which was prescribed by formula. These formulas specified sequences of terms by reference to category types. Only three citation orders were permitted: a term in the concrete category followed by one in the process category (e.g., Wool-Scouring); (2) a country term followed by a process term (e.g., Brazil - Education); and (3) a concrete term followed by a country term, followed by a process term (e.g., Nitrate-Chile-Trade). Kaiser's system was a precursor of two of the most significant developments in twentieth-century approaches to subject access-the special purpose use of language for indexing, thus the concept of index language, which was to emerge as a generative idea at the time of the second Cranfield experiment (1966) and the use of facets to categorize subject indicators, which was to become the characterizing feature of analytico-synthetic indexing methods such as the Colon classification. In addition to its visionary quality, Kaiser's work is notable for its meticulousness and honesty, as can be seen, for instance, in his observations about the difficulties in facet definition.
  12. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.00
    0.0038267244 = product of:
      0.015306897 = sum of:
        0.015306897 = product of:
          0.030613795 = sum of:
            0.030613795 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.030613795 = score(doc=1417,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  13. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.00
    0.0038267244 = product of:
      0.015306897 = sum of:
        0.015306897 = product of:
          0.030613795 = sum of:
            0.030613795 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.030613795 = score(doc=1418,freq=2.0), product of:
                0.15825124 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045191016 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik