Search (97 results, page 1 of 5)

  • × theme_ss:"Begriffstheorie"
  1. Hudon, M.: Preparing terminological definitions for indexing and retrieval thesauri : a model (1996) 0.04
    0.035119243 = product of:
      0.10535773 = sum of:
        0.020155499 = weight(_text_:library in 5193) [ClassicSimilarity], result of:
          0.020155499 = score(doc=5193,freq=2.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.23240642 = fieldWeight in 5193, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0625 = fieldNorm(doc=5193)
        0.018861448 = weight(_text_:of in 5193) [ClassicSimilarity], result of:
          0.018861448 = score(doc=5193,freq=14.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.36569026 = fieldWeight in 5193, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5193)
        0.06634078 = weight(_text_:congress in 5193) [ClassicSimilarity], result of:
          0.06634078 = score(doc=5193,freq=2.0), product of:
            0.15733992 = queryWeight, product of:
              4.7703104 = idf(docFreq=1018, maxDocs=44218)
              0.03298316 = queryNorm
            0.42163986 = fieldWeight in 5193, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.7703104 = idf(docFreq=1018, maxDocs=44218)
              0.0625 = fieldNorm(doc=5193)
      0.33333334 = coord(3/9)
    
    Abstract
    A model for standardizing existing definitions and/or writing new definitions for thesaurus descriptors has been developed, within the framework of a research project concerned with the usefulness of terminological definitions for indexers working with a thesaurus. The proposed model is an expansion of a model presented by Sager and L'Homme in 1994. Examples of its application in a thesaurus describing the field of Adult literacy programming and training are introduced
    Source
    Knowledge organization and change: Proceedings of the Fourth International ISKO Conference, 15-18 July 1996, Library of Congress, Washington, DC. Ed.: R. Green
  2. Axelos, C.; Flasch, K.; Schepers, H.; Kuhlen, R.; Romberg, R.; Zimmermann, R.: Allgemeines/Besonderes (1971-2007) 0.03
    0.028810833 = product of:
      0.2592975 = sum of:
        0.2592975 = weight(_text_:2f in 4031) [ClassicSimilarity], result of:
          0.2592975 = score(doc=4031,freq=4.0), product of:
            0.2796316 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03298316 = queryNorm
            0.92728245 = fieldWeight in 4031, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4031)
      0.11111111 = coord(1/9)
    
    Footnote
    DOI: 10.24894/HWPh.5033. Vgl. unter: https://www.schwabeonline.ch/schwabe-xaveropp/elibrary/start.xav#__elibrary__%2F%2F*%5B%40attr_id%3D%27verw.allgemeinesbesonderes%27%5D__1515856414979.
  3. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.03
    0.025689274 = product of:
      0.057800867 = sum of:
        0.021429438 = product of:
          0.042858876 = sum of:
            0.042858876 = weight(_text_:headings in 5588) [ClassicSimilarity], result of:
              0.042858876 = score(doc=5588,freq=2.0), product of:
                0.15996648 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.03298316 = queryNorm
                0.2679241 = fieldWeight in 5588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5588)
          0.5 = coord(1/2)
        0.0125971865 = weight(_text_:library in 5588) [ClassicSimilarity], result of:
          0.0125971865 = score(doc=5588,freq=2.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.14525402 = fieldWeight in 5588, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5588)
        0.012602335 = weight(_text_:of in 5588) [ClassicSimilarity], result of:
          0.012602335 = score(doc=5588,freq=16.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.24433708 = fieldWeight in 5588, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5588)
        0.011171908 = product of:
          0.022343816 = sum of:
            0.022343816 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
              0.022343816 = score(doc=5588,freq=2.0), product of:
                0.11550141 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03298316 = queryNorm
                0.19345059 = fieldWeight in 5588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5588)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    To organize information, librarians create structures. These structures grow from a logic that goes back at least as far as Aristotle. It is the basis of classification as we practice it, and thesauri and subject headings have developed from it. Feminist critiques of logic suggest that logic is gendered in nature. This article will explore how these critiques play out in contemporary standards for the organization of information. Our widely used classification schemes embody principles such as hierarchical force that conform to traditional/Aristotelian logic. Our subject heading strings follow a linear path of subdivision. Our thesauri break down subjects into discrete concepts. In thesauri and subject heading lists we privilege hierarchical relationships, reflected in the syndetic structure of broader and narrower terms, over all other relationships. Are our classificatory and syndetic structures gendered? Are there other options? Carol Gilligan's In a Different Voice (1982), Women's Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986), and more recent related research suggest a different type of structure for women's knowledge grounded in "connected knowing." This article explores current and potential elements of connected knowing in subject access with a focus on the relationships, both paradigmatic and syntagmatic, between concepts.
    Date
    11.12.2019 19:00:22
    Source
    Library trends. 56(2007) no.2, S.509-541
  4. Pansegrouw, J.G.: ¬Die begrippe spesie, klas en versameling in verhouding tot indekseringteorie (1995) 0.02
    0.021717355 = product of:
      0.065152064 = sum of:
        0.020155499 = weight(_text_:library in 4447) [ClassicSimilarity], result of:
          0.020155499 = score(doc=4447,freq=2.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.23240642 = fieldWeight in 4447, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0625 = fieldNorm(doc=4447)
        0.020163735 = weight(_text_:of in 4447) [ClassicSimilarity], result of:
          0.020163735 = score(doc=4447,freq=16.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.39093933 = fieldWeight in 4447, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4447)
        0.024832834 = product of:
          0.049665667 = sum of:
            0.049665667 = weight(_text_:problems in 4447) [ClassicSimilarity], result of:
              0.049665667 = score(doc=4447,freq=2.0), product of:
                0.13613719 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03298316 = queryNorm
                0.36482072 = fieldWeight in 4447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4447)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Analyses the concepts species, class and set to explain the development of generic arrangement beginning with Aristotle's theory of essences. Explains the development from Aristotelian essences to the acceptance of accidental characteristics, culminating in the logical algebra of Boole and in a distinction between classes (as the extension of a concept) and sets (as a grouping of elements). Discusses 2 problems relating to indexing theory, selected from PRECIS and the work of Das Gupta
    Source
    South African journal of library and information science. 63(1995) no.4, S.173-178
  5. Jouis, C.: Logic of relationships (2002) 0.02
    0.021272603 = product of:
      0.09572671 = sum of:
        0.019926041 = weight(_text_:of in 1204) [ClassicSimilarity], result of:
          0.019926041 = score(doc=1204,freq=40.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.38633084 = fieldWeight in 1204, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1204)
        0.07580067 = sum of:
          0.053456858 = weight(_text_:etc in 1204) [ClassicSimilarity], result of:
            0.053456858 = score(doc=1204,freq=2.0), product of:
              0.17865302 = queryWeight, product of:
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.03298316 = queryNorm
              0.2992217 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.4164915 = idf(docFreq=533, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
          0.022343816 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
            0.022343816 = score(doc=1204,freq=2.0), product of:
              0.11550141 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03298316 = queryNorm
              0.19345059 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
      0.22222222 = coord(2/9)
    
    Abstract
    A main goal of recent studies in semantics is to integrate into conceptual structures the models of representation used in linguistics, logic, and/or artificial intelligence. A fundamental problem resides in the need to structure knowledge and then to check the validity of constructed representations. We propose associating logical properties with relationships by introducing the relationships into a typed and functional system of specifcations. This makes it possible to compare conceptual representations against the relationships established between the concepts. The mandatory condition to validate such a conceptual representation is consistency. The semantic system proposed is based an a structured set of semantic primitives-types, relations, and properties-based an a global model of language processing, Applicative and Cognitive Grammar (ACG) (Desc16s, 1990), and an extension of this model to terminology (Jouis & Mustafa 1995, 1996, 1997). The ACG postulates three levels of representation of languages, including a cognitive level. At this level, the meanings of lexical predicates are represented by semantic cognitive schemes. From this perspective, we propose a set of semantic concepts, which defines an organized system of meanings. Relations are part of a specification network based an a general terminological scheure (i.e., a coherent system of meanings of relations). In such a system, a specific relation may be characterized as to its: (1) functional type (the semantic type of arguments of the relation); (2) algebraic properties (reflexivity, symmetry, transitivity, etc.); and (3) combinatorial relations with other entities in the same context (for instance, the part of the text where a concept is defined).
    Date
    1.12.2002 11:12:22
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  6. Bonnevie, E.: Dretske's semantic information theory and meta-theories in library and information science (2001) 0.02
    0.01912874 = product of:
      0.057386216 = sum of:
        0.025194373 = weight(_text_:library in 4484) [ClassicSimilarity], result of:
          0.025194373 = score(doc=4484,freq=8.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.29050803 = fieldWeight in 4484, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4484)
        0.016671322 = weight(_text_:of in 4484) [ClassicSimilarity], result of:
          0.016671322 = score(doc=4484,freq=28.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.32322758 = fieldWeight in 4484, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4484)
        0.0155205205 = product of:
          0.031041041 = sum of:
            0.031041041 = weight(_text_:problems in 4484) [ClassicSimilarity], result of:
              0.031041041 = score(doc=4484,freq=2.0), product of:
                0.13613719 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03298316 = queryNorm
                0.22801295 = fieldWeight in 4484, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4484)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This article presents the semantic information theory, formulated by the philosopher Fred I. Dretske, as a contribution to the discussion of metatheories and their practical implications in the field of library and information science. Dretske's theory is described in Knowledge and the flow of information. It is founded on mathematical communication theory but developed and elaborated into a cognitive, functionalistic theory, is individually oriented, and deals with the content of information. The topics are: the information process from perception to cognition, and how concept formation takes place in terms of digitisation. Other important issues are the concepts of information and knowledge, truth and meaning. Semantic information theory can be used as a frame of reference in order to explain, clarify and refute concepts currently used in library and information science, and as the basis for critical reviews of elements of the cognitive viewpoint in IR, primarily the notion of "potential information". The main contribution of the theory lies in a clarification of concepts, but there are still problems regarding the practical applications. More research is needed to combine philosophical discussions with the practice of information and library science.
    Source
    Journal of documentation. 57(2001) no.4, S.519-534
  7. Treude, L.: ¬Das Problem der Konzeptdefinition in der Wissensorganisation : über einen missglückten Versuch der Klärung (2013) 0.01
    0.013072116 = product of:
      0.039216347 = sum of:
        0.015116624 = weight(_text_:library in 3060) [ClassicSimilarity], result of:
          0.015116624 = score(doc=3060,freq=2.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.17430481 = fieldWeight in 3060, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=3060)
        0.0106934365 = weight(_text_:of in 3060) [ClassicSimilarity], result of:
          0.0106934365 = score(doc=3060,freq=8.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.20732689 = fieldWeight in 3060, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3060)
        0.013406289 = product of:
          0.026812578 = sum of:
            0.026812578 = weight(_text_:22 in 3060) [ClassicSimilarity], result of:
              0.026812578 = score(doc=3060,freq=2.0), product of:
                0.11550141 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03298316 = queryNorm
                0.23214069 = fieldWeight in 3060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3060)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Alon Friedman und Richard P. Smiraglia kündigen in ihrem aktuellen Artikel "Nodes and arcs: concept map, semiotics, and knowledge organization" an, eine "empirical demonstration of how the domain [of knowledge organisation] itself understands the meaning of a concept" durchzuführen. Die Klärung des Konzeptbegriffs ist ein begrüßenswertes Vorhaben, das die Autoren in einer empirischen Untersuchung von concept maps (also Konzeptdiagrammen) aus dem Bereich der Wissensorganisation nachvollziehen wollen. Beschränkte sich Friedman 2011 in seinem Artikel "Concept theory and semiotics in knowledge organization" [Fn 01] noch ausschließlich auf Sprache als Medium im Zeichenprozess, bezieht er sich nun auf Visualisierungen als Repräsentationsform und scheint somit seinen Ansatz um den Aspekt der Bildlichkeit zu erweitern. Zumindest erwartet man dies nach der Lektüre der Beschreibung des aktuellen Vorhabens von Friedman und Smiraglia, das - wie die Autoren verkünden - auf einer semiotischen Grundlage durchgeführt worden sei.
    Content
    Vgl.: http://www.libreas.eu/09treude.htm. Bezug zu: Alon Friedman, Richard P. Smiraglia, (2013): Nodes and arcs: concept map, semiotics, and knowledge organization. In: Journal of Documentation, Vol. 69/1, S.27-48.
    Source
    LIBREAS: Library ideas. no.22, 2013, S.xx-xx
  8. Dahlberg, I.: Zur Theorie des Begriffs (1974) 0.01
    0.010884871 = product of:
      0.04898192 = sum of:
        0.016907806 = weight(_text_:of in 1617) [ClassicSimilarity], result of:
          0.016907806 = score(doc=1617,freq=20.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.32781258 = fieldWeight in 1617, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1617)
        0.032074116 = product of:
          0.06414823 = sum of:
            0.06414823 = weight(_text_:etc in 1617) [ClassicSimilarity], result of:
              0.06414823 = score(doc=1617,freq=2.0), product of:
                0.17865302 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03298316 = queryNorm
                0.35906604 = fieldWeight in 1617, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1617)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A concept is regarded as the common element of both classification systems and thesauri. Reality and knowledge are not represented by words or terms but by the meanings "behind" these tokens. A concept of, say, an object, a property of an object, a process, etc. is derived from verbal statements on these as subjects and may therefore be defined as the whole of true and possible predicates that can be collected on a given subject. It is from these predicates that the characteristics of the corresponding concepts can be derived. Common characteristics in different concepts lead to relationsbetween concepts, which relations in turn are factors for the formation of concept systems. Different kinds of relationships as well as different kinds of concepts are distinguished. It is pointed out that an orderly supply of the elements for propositions (informative statements) on new knowledge requires the construction and availability of such concept systems
  9. Pathak, L.P.: Concept-term relationship and a classified schedule of isolates for the term 'concept' (2000) 0.01
    0.010062385 = product of:
      0.045280732 = sum of:
        0.030001212 = product of:
          0.060002424 = sum of:
            0.060002424 = weight(_text_:headings in 6046) [ClassicSimilarity], result of:
              0.060002424 = score(doc=6046,freq=2.0), product of:
                0.15996648 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.03298316 = queryNorm
                0.37509373 = fieldWeight in 6046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6046)
          0.5 = coord(1/2)
        0.015279518 = weight(_text_:of in 6046) [ClassicSimilarity], result of:
          0.015279518 = score(doc=6046,freq=12.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.29624295 = fieldWeight in 6046, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6046)
      0.22222222 = coord(2/9)
    
    Abstract
    Draws attention to the efforts to define the terms 'concept' and 'term' and suggests a schedule of isolates for the term 'concept' under eight headings: 0. Concept; 1. Theoretical aspects; 2. Learning theory and Psychological aspects; 3. Origin, evolution, formation, construction; 4. Semantic aspects; 5.Terms and Terminology; 6. Usage and discipline-specific applications; and 7. Concepts and ISAR systems. The schedule also includes about 150 aspects/isolate terms related to 'concept' along with the name of the authors who have used them. The schedule is intended to help in identifying the various aspects of a concept with the help of the terms used for them. These aspects may guide to some extent, in dissecting and seeing the social science concepts from various point of views
  10. Cruse, D.A.: Hyponymy and its varieties (2002) 0.01
    0.009999237 = product of:
      0.044996567 = sum of:
        0.020163735 = weight(_text_:of in 1186) [ClassicSimilarity], result of:
          0.020163735 = score(doc=1186,freq=16.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.39093933 = fieldWeight in 1186, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1186)
        0.024832834 = product of:
          0.049665667 = sum of:
            0.049665667 = weight(_text_:problems in 1186) [ClassicSimilarity], result of:
              0.049665667 = score(doc=1186,freq=2.0), product of:
                0.13613719 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03298316 = queryNorm
                0.36482072 = fieldWeight in 1186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1186)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This chapter deals with the paradigmatic sense relation of hyponymy as manifested in nouns. A number of approaches to the definition of the relation are discussed, with particular attention being given to the problems of framing a prototype-theoretical characterization. An account is offered of a number of sub-varieties of hyponymy.
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  11. Ozeki, S.: Was ist der Begriff? (1987) 0.01
    0.009213997 = product of:
      0.082925975 = sum of:
        0.082925975 = weight(_text_:congress in 658) [ClassicSimilarity], result of:
          0.082925975 = score(doc=658,freq=2.0), product of:
            0.15733992 = queryWeight, product of:
              4.7703104 = idf(docFreq=1018, maxDocs=44218)
              0.03298316 = queryNorm
            0.52704984 = fieldWeight in 658, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.7703104 = idf(docFreq=1018, maxDocs=44218)
              0.078125 = fieldNorm(doc=658)
      0.11111111 = coord(1/9)
    
    Source
    Terminology and knowledge engineering. Proc. Int. Congress an Terminology and Knowledge Engineering, 29.9.-1.10.1987, Trier. Ed: Hans Czap, Christian Galinski
  12. Thellefsen, M.M.; Thellefsen, T.; Sørensen, B.: Information as signs : a semiotic analysis of the information concept, determining its ontological and epistemological foundations (2018) 0.01
    0.009070726 = product of:
      0.040818267 = sum of:
        0.014089839 = weight(_text_:of in 4241) [ClassicSimilarity], result of:
          0.014089839 = score(doc=4241,freq=20.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.27317715 = fieldWeight in 4241, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4241)
        0.026728429 = product of:
          0.053456858 = sum of:
            0.053456858 = weight(_text_:etc in 4241) [ClassicSimilarity], result of:
              0.053456858 = score(doc=4241,freq=2.0), product of:
                0.17865302 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03298316 = queryNorm
                0.2992217 = fieldWeight in 4241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4241)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce's phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all, or conversely, information is understood only relative to subjective/discursive intentions, agendas, etc. To overcome the limitations of defining information as either objective or subjective/discursive, a semiotic analysis shows that information understood as signs is consistently sensitive to both objective and subjective/discursive features of information. It is consequently argued that information as concept should be defined in relation to ontological conditions having certain epistemological consequences. Originality/value The paper presents an analytical framework, derived from semiotics, that adds to the developments of the philosophical dimensions of information within LIS.
    Source
    Journal of documentation. 74(2018) no.2, S.372-382
  13. Nakamura, Y.: Subdivisions vs. conjunctions : a discussion on concept theory (1998) 0.01
    0.008749333 = product of:
      0.039371997 = sum of:
        0.01764327 = weight(_text_:of in 69) [ClassicSimilarity], result of:
          0.01764327 = score(doc=69,freq=16.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.34207192 = fieldWeight in 69, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=69)
        0.02172873 = product of:
          0.04345746 = sum of:
            0.04345746 = weight(_text_:problems in 69) [ClassicSimilarity], result of:
              0.04345746 = score(doc=69,freq=2.0), product of:
                0.13613719 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03298316 = queryNorm
                0.31921813 = fieldWeight in 69, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=69)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    After studying the relations between two words(nouns) that constitute a compound term, the relation between corresponding concepts discussed. The impossibility of having a conjunction between two concepts that have no common feature causes inconvenience in the application of concept theory to information retrieval problems. Another kind of conjunctions, different from that by co-occurrence, is proposed and characteristics of this conjunction is studied. It revealed that one of new ones has the same character with colon combination in UDC. The possibility of having three kinds of conjunction including Wsterian concept conjunction is presented. It is also discussed that subdivisions can be replaced by new conjunctions
    Source
    Structures and relations in knowledge organization: Proceedings of the 5th International ISKO-Conference, Lille, 25.-29.8.1998. Ed.: W. Mustafa el Hadi et al
  14. Conceptual structures : logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000 (2000) 0.01
    0.008400584 = product of:
      0.037802625 = sum of:
        0.015122802 = weight(_text_:of in 691) [ClassicSimilarity], result of:
          0.015122802 = score(doc=691,freq=64.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.2932045 = fieldWeight in 691, product of:
              8.0 = tf(freq=64.0), with freq of:
                64.0 = termFreq=64.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0234375 = fieldNorm(doc=691)
        0.022679824 = product of:
          0.04535965 = sum of:
            0.04535965 = weight(_text_:etc in 691) [ClassicSimilarity], result of:
              0.04535965 = score(doc=691,freq=4.0), product of:
                0.17865302 = queryWeight, product of:
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.03298316 = queryNorm
                0.25389802 = fieldWeight in 691, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.4164915 = idf(docFreq=533, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=691)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Computer scientists create models of a perceived reality. Through AI techniques, these models aim at providing the basic support for emulating cognitive behavior such as reasoning and learning, which is one of the main goals of the Al research effort. Such computer models are formed through the interaction of various acquisition and inference mechanisms: perception, concept learning, conceptual clustering, hypothesis testing, probabilistic inference, etc., and are represented using different paradigms tightly linked to the processes that use them. Among these paradigms let us cite: biological models (neural nets, genetic programming), logic-based models (first-order logic, modal logic, rule-based systems), virtual reality models (object systems, agent systems), probabilistic models (Bayesian nets, fuzzy logic), linguistic models (conceptual dependency graphs, language-based rep resentations), etc. One of the strengths of the Conceptual Graph (CG) theory is its versatility in terms of the representation paradigms under which it falls. It can be viewed and therefore used, under different representation paradigms, which makes it a popular choice for a wealth of applications. Its full coupling with different cognitive processes lead to the opening of the field toward related research communities such as the Description Logic, Formal Concept Analysis, and Computational Linguistic communities. We now see more and more research results from one community enrich the other, laying the foundations of common philosophical grounds from which a successful synergy can emerge. ICCS 2000 embodies this spirit of research collaboration. It presents a set of papers that we believe, by their exposure, will benefit the whole community. For instance, the technical program proposes tracks on Conceptual Ontologies, Language, Formal Concept Analysis, Computational Aspects of Conceptual Structures, and Formal Semantics, with some papers on pragmatism and human related aspects of computing. Never before was the program of ICCS formed by so heterogeneously rooted theories of knowledge representation and use. We hope that this swirl of ideas will benefit you as much as it already has benefited us while putting together this program
    Content
    Concepts and Language: The Role of Conceptual Structure in Human Evolution (Keith Devlin) - Concepts in Linguistics - Concepts in Natural Language (Gisela Harras) - Patterns, Schemata, and Types: Author Support through Formalized Experience (Felix H. Gatzemeier) - Conventions and Notations for Knowledge Representation and Retrieval (Philippe Martin) - Conceptual Ontology: Ontology, Metadata, and Semiotics (John F. Sowa) - Pragmatically Yours (Mary Keeler) - Conceptual Modeling for Distributed Ontology Environments (Deborah L. McGuinness) - Discovery of Class Relations in Exception Structured Knowledge Bases (Hendra Suryanto, Paul Compton) - Conceptual Graphs: Perspectives: CGs Applications: Where Are We 7 Years after the First ICCS ? (Michel Chein, David Genest) - The Engineering of a CC-Based System: Fundamental Issues (Guy W. Mineau) - Conceptual Graphs, Metamodeling, and Notation of Concepts (Olivier Gerbé, Guy W. Mineau, Rudolf K. Keller) - Knowledge Representation and Reasonings: Based on Graph Homomorphism (Marie-Laure Mugnier) - User Modeling Using Conceptual Graphs for Intelligent Agents (James F. Baldwin, Trevor P. Martin, Aimilia Tzanavari) - Towards a Unified Querying System of Both Structured and Semi-structured Imprecise Data Using Fuzzy View (Patrice Buche, Ollivier Haemmerlé) - Formal Semantics of Conceptual Structures: The Extensional Semantics of the Conceptual Graph Formalism (Guy W. Mineau) - Semantics of Attribute Relations in Conceptual Graphs (Pavel Kocura) - Nested Concept Graphs and Triadic Power Context Families (Susanne Prediger) - Negations in Simple Concept Graphs (Frithjof Dau) - Extending the CG Model by Simulations (Jean-François Baget) - Contextual Logic and Formal Concept Analysis: Building and Structuring Description Logic Knowledge Bases: Using Least Common Subsumers and Concept Analysis (Franz Baader, Ralf Molitor) - On the Contextual Logic of Ordinal Data (Silke Pollandt, Rudolf Wille) - Boolean Concept Logic (Rudolf Wille) - Lattices of Triadic Concept Graphs (Bernd Groh, Rudolf Wille) - Formalizing Hypotheses with Concepts (Bernhard Ganter, Sergei 0. Kuznetsov) - Generalized Formal Concept Analysis (Laurent Chaudron, Nicolas Maille) - A Logical Generalization of Formal Concept Analysis (Sébastien Ferré, Olivier Ridoux) - On the Treatment of Incomplete Knowledge in Formal Concept Analysis (Peter Burmeister, Richard Holzer) - Conceptual Structures in Practice: Logic-Based Networks: Concept Graphs and Conceptual Structures (Peter W. Eklund) - Conceptual Knowledge Discovery and Data Analysis (Joachim Hereth, Gerd Stumme, Rudolf Wille, Uta Wille) - CEM - A Conceptual Email Manager (Richard Cole, Gerd Stumme) - A Contextual-Logic Extension of TOSCANA (Peter Eklund, Bernd Groh, Gerd Stumme, Rudolf Wille) - A Conceptual Graph Model for W3C Resource Description Framework (Olivier Corby, Rose Dieng, Cédric Hébert) - Computational Aspects of Conceptual Structures: Computing with Conceptual Structures (Bernhard Ganter) - Symmetry and the Computation of Conceptual Structures (Robert Levinson) An Introduction to SNePS 3 (Stuart C. Shapiro) - Composition Norm Dynamics Calculation with Conceptual Graphs (Aldo de Moor) - From PROLOG++ to PROLOG+CG: A CG Object-Oriented Logic Programming Language (Adil Kabbaj, Martin Janta-Polczynski) - A Cost-Bounded Algorithm to Control Events Generalization (Gaël de Chalendar, Brigitte Grau, Olivier Ferret)
  15. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.01
    0.007634262 = product of:
      0.03435418 = sum of:
        0.018713512 = weight(_text_:of in 2574) [ClassicSimilarity], result of:
          0.018713512 = score(doc=2574,freq=18.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.36282203 = fieldWeight in 2574, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2574)
        0.01564067 = product of:
          0.03128134 = sum of:
            0.03128134 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
              0.03128134 = score(doc=2574,freq=2.0), product of:
                0.11550141 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03298316 = queryNorm
                0.2708308 = fieldWeight in 2574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2574)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A method (HICLAS, DeBoeck & Rosenberg, 1988) for studying the internal structure of semantic concepts is presented. The proposed method reveals the internal structure of the extension as well as the intesion of a concept, together with a correspondence relation that shows the mutual dependence of both structures. Its use is illustrated with the analysis of simple concepts (e.g. sports) and conjunctive concepts (e.g. birds that are also pets). The underlying structure that is revealed can be interpreted as a differentiation of the simple concepts studied and for conjunctive concepts the proposed method is able to extract non-inherited and emergent features (Hampton, 1988)
    Date
    22. 7.2000 19:17:40
    Source
    European journal of cognitive psychology. 6(1994) no.1, S.43-75
  16. Besler, G.; Szulc, J.: Gottlob Frege's theory of definition as useful tool for knowledge organization : definition of 'context' - case study (2014) 0.01
    0.007333288 = product of:
      0.032999795 = sum of:
        0.021827886 = weight(_text_:of in 1440) [ClassicSimilarity], result of:
          0.021827886 = score(doc=1440,freq=48.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.42320424 = fieldWeight in 1440, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1440)
        0.011171908 = product of:
          0.022343816 = sum of:
            0.022343816 = weight(_text_:22 in 1440) [ClassicSimilarity], result of:
              0.022343816 = score(doc=1440,freq=2.0), product of:
                0.11550141 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03298316 = queryNorm
                0.19345059 = fieldWeight in 1440, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1440)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The aim of this paper is to analyze the Gottlob Frege's (1848-1925) theory of definition as a tool for knowledge organization. The objective was achieved by discussing the theory of definition including: the aims of definition, kinds of definition, condition of correct definition, what is undefinable. Frege indicated the following aims of a defining: (1) to introduce a new word, which has had no precise meaning until then (2) to explain the meaning of a word; (3) to catch a thought. We would like to present three kinds of definitions used by Frege: a contextual definition, a stipulative definition and a piecemeal definition. In the history of theory of definition Frege was the first to have formulated the condition of a correct definition. According to Frege not everything can be defined, what is logically simple cannot have a proper definition Usability of Frege's theory of definition is referred in the case study. Definitions that serve as an example are definitions of 'context'. The term 'context' is used in different situations and meanings in the field of knowledge organization. The paper is rounded by a discussion of how Frege's theory of definition can be useful for knowledge organization. To present G. Frege's theory of definition in view of the need for knowledge organization we shall start with different ranges of knowledge organization.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  17. Sekhar, M.; Ekbote, E.R.: Cognitive skills of conceptualisation process and types of concepts (1992) 0.01
    0.007018732 = product of:
      0.031584293 = sum of:
        0.01763606 = weight(_text_:library in 2381) [ClassicSimilarity], result of:
          0.01763606 = score(doc=2381,freq=2.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.20335563 = fieldWeight in 2381, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2381)
        0.01394823 = weight(_text_:of in 2381) [ClassicSimilarity], result of:
          0.01394823 = score(doc=2381,freq=10.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.2704316 = fieldWeight in 2381, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2381)
      0.22222222 = coord(2/9)
    
    Abstract
    Based upon the existing cognitive theories and available related literature, the hypothesis "Conceptualisation process involves a set of specific cognitive skills" has been evolved. An attempt has been made to identify these cognitive skills that are directly involving in conceptualisation process and the outcome is the identification of 13 cognitve skills that are essential for conceptualisation process. This research is directed towards evolving a new concept classification to facilitate learning and teaching. Here we classify the concepts into six categories based upon their attributes and attribute's relations. A specific "Concept analysis ability" tool is also developed to measure the 'concept analysis ability' of secondary school teachers
    Imprint
    Bangalore : Sarada Ranganathan Endowment for Library Science
  18. ISO/DIS 5127: Information and documentation - foundation and vocabulary (2013) 0.01
    0.006878926 = product of:
      0.030955166 = sum of:
        0.015434646 = weight(_text_:of in 6070) [ClassicSimilarity], result of:
          0.015434646 = score(doc=6070,freq=24.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.2992506 = fieldWeight in 6070, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6070)
        0.0155205205 = product of:
          0.031041041 = sum of:
            0.031041041 = weight(_text_:problems in 6070) [ClassicSimilarity], result of:
              0.031041041 = score(doc=6070,freq=2.0), product of:
                0.13613719 = queryWeight, product of:
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.03298316 = queryNorm
                0.22801295 = fieldWeight in 6070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1274753 = idf(docFreq=1937, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6070)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This standard provides the basic terms and their definitions in the field of information and documentation for the purpose of promoting and facilitating knowledge sharing and information exchange. This International Standard presents terms and definitions of selected concepts relevant to the field of information and documentation. If a definition is from other standards, the priority of selection is TC46 technical standards, then technical standards in relevant field, and then terminology related standards. The scope of this International Standard corresponds to that of ISO/TC46, Standardization of practices relating to libraries, documentation and information centres, publishing, archives, records management, museum documentation, indexing and abstracting services, and information science. ISO 5127 was prepared by Technical Committee ISO/TC 46, Information and Documentation, WG4, Terminology of information and documentation. This second edition cancels and replaces the first edition (ISO 5127:2001), which has been technically revised to overcome problems in the practical application of ISO 5127:2001 and to take account of the new developments in the field of information and documentation.
  19. Machado, L.M.O.; Martínez-Ávila, D.; Simões, M.da Graça de Melo: Concept theory in library and information science : an epistemological analysis (2019) 0.01
    0.0067594326 = product of:
      0.030417446 = sum of:
        0.017815111 = weight(_text_:library in 5457) [ClassicSimilarity], result of:
          0.017815111 = score(doc=5457,freq=4.0), product of:
            0.08672522 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03298316 = queryNorm
            0.2054202 = fieldWeight in 5457, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5457)
        0.012602335 = weight(_text_:of in 5457) [ClassicSimilarity], result of:
          0.012602335 = score(doc=5457,freq=16.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.24433708 = fieldWeight in 5457, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5457)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose The purpose of this paper is to discuss the literature on concept theory in library and information science (LIS) from an epistemological perspective, ascribing each paper to an epistemological family and discussing their relevance in the context of the knowledge organization (KO) domain. Design/methodology/approach This paper adopts a hermeneutic approach for the analysis of the texts that compose the corpus of study following contingency and categorical analyses. More specifically, the paper works with Bardin's contingency analysis and follows Hjørland's families of epistemologies for the categorization. Findings The analysis corroborates the observations made for the last ten years about the scarcity of studies on concept theory in LIS and KO. However, the study also reveals an epistemological turn on concept theory since 2009 that could be considered a departure from the rationalist views that dominated the field and a continuation of a broader paradigm shift in LIS and KO. All analyzed papers except two follow pragmatist or historicist approaches. Originality/value This paper follows-up and systematizes the contributions to the LIS and KO fields on concept theory mainly during the last decade. The epistemological analysis reveals the dominant views in this paradigm shift and the main authors and trends that are present in the LIS literature on concept theory.
    Source
    Journal of documentation. 75(2019) no.4, S.876-891
  20. Marradi, A.: ¬The concept of concept : concepts and terms (2012) 0.01
    0.006683425 = product of:
      0.030075412 = sum of:
        0.018903503 = weight(_text_:of in 33) [ClassicSimilarity], result of:
          0.018903503 = score(doc=33,freq=36.0), product of:
            0.05157766 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03298316 = queryNorm
            0.36650562 = fieldWeight in 33, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=33)
        0.011171908 = product of:
          0.022343816 = sum of:
            0.022343816 = weight(_text_:22 in 33) [ClassicSimilarity], result of:
              0.022343816 = score(doc=33,freq=2.0), product of:
                0.11550141 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03298316 = queryNorm
                0.19345059 = fieldWeight in 33, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=33)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The concept of concept has seldom been examined in its entirety, and the term very seldom defined. The rigidity, or lack thereof, and the homogeneity, or lack thereof, of concepts, are only two of their characteristics that have been debated. These issues are reviewed in this paper, namely: 1) does a concept represent its referent(s), or is it a free creation of the mind?; 2) can a concept be analyzed in parts or elements?; 3) must a concept be general, i.e., refer to a category or a type, or can it refer to a single object, physical or mental?; 4) are concepts as clearly delimited as terms are? Are concepts voiceless terms?; and, 5) what do terms contribute to an individual's and a community's conceptual richness? As regards the relationship of concepts with their referents in the stage of formation, it seems reasonable to conclude that said relationship may be close in some concepts, less close in others, and lacking altogether in some cases. The set of elements of a concept, which varies from individual to individual and across time inside the same individual, is called the intension of a concept. The set of referents of a concept is called the extension of that concept. Most concepts don't have a clearly delimited extension: their referents form a fuzzy set. The aspects of a concept's intension form a scale of generality. A concept is not equal to the term that describes it; rather, many terms are joined to concepts. Language, therefore, renders a gamut of services to the development, consolidation, and communication of conceptual richness.
    Date
    22. 1.2012 13:11:25
    Series
    Forum: The philosophy of classification

Authors

Languages

  • e 74
  • d 11
  • m 7
  • ru 3
  • nl 1
  • pt 1
  • More… Less…

Types

  • a 82
  • s 8
  • m 7
  • el 2
  • n 1
  • x 1
  • More… Less…