Search (274 results, page 1 of 14)

  • × theme_ss:"Wissensrepräsentation"
  1. Priss, U.: Faceted information representation (2000) 0.09
    0.09450364 = product of:
      0.14175546 = sum of:
        0.03624057 = weight(_text_:retrieval in 5095) [ClassicSimilarity], result of:
          0.03624057 = score(doc=5095,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.23394634 = fieldWeight in 5095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5095)
        0.10551489 = sum of:
          0.056945946 = weight(_text_:conference in 5095) [ClassicSimilarity], result of:
            0.056945946 = score(doc=5095,freq=2.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.2932582 = fieldWeight in 5095, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5095)
          0.048568945 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
            0.048568945 = score(doc=5095,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.2708308 = fieldWeight in 5095, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5095)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents an abstract formalization of the notion of "facets". Facets are relational structures of units, relations and other facets selected for a certain purpose. Facets can be used to structure large knowledge representation systems into a hierarchical arrangement of consistent and independent subsystems (facets) that facilitate flexibility and combinations of different viewpoints or aspects. This paper describes the basic notions, facet characteristics and construction mechanisms. It then explicates the theory in an example of a faceted information retrieval system (FaIR)
    Date
    22. 1.2016 17:47:06
    Source
    Working with conceptual structures: contributions to ICCS 2000. 8th International Conference on Conceptual Structures: Logical, Linguistic, and Computational Issues. Darmstadt, August 14-18, 2000. Ed.: G. Stumme
  2. Renear, A.H.; Wickett, K.M.; Urban, R.J.; Dubin, D.; Shreeves, S.L.: Collection/item metadata relationships (2008) 0.09
    0.08958103 = product of:
      0.13437153 = sum of:
        0.043930206 = weight(_text_:retrieval in 2623) [ClassicSimilarity], result of:
          0.043930206 = score(doc=2623,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.2835858 = fieldWeight in 2623, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2623)
        0.09044133 = sum of:
          0.04881081 = weight(_text_:conference in 2623) [ClassicSimilarity], result of:
            0.04881081 = score(doc=2623,freq=2.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.25136417 = fieldWeight in 2623, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.046875 = fieldNorm(doc=2623)
          0.041630525 = weight(_text_:22 in 2623) [ClassicSimilarity], result of:
            0.041630525 = score(doc=2623,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.23214069 = fieldWeight in 2623, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2623)
      0.6666667 = coord(2/3)
    
    Abstract
    Contemporary retrieval systems, which search across collections, usually ignore collection-level metadata. Alternative approaches, exploiting collection-level information, will require an understanding of the various kinds of relationships that can obtain between collection-level and item-level metadata. This paper outlines the problem and describes a project that is developing a logic-based framework for classifying collection/item metadata relationships. This framework will support (i) metadata specification developers defining metadata elements, (ii) metadata creators describing objects, and (iii) system designers implementing systems that take advantage of collection-level metadata. We present three examples of collection/item metadata relationship categories, attribute/value-propagation, value-propagation, and value-constraint and show that even in these simple cases a precise formulation requires modal notions in addition to first-order logic. These formulations are related to recent work in information retrieval and ontology evaluation.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.09
    0.08958103 = product of:
      0.13437153 = sum of:
        0.043930206 = weight(_text_:retrieval in 2230) [ClassicSimilarity], result of:
          0.043930206 = score(doc=2230,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.2835858 = fieldWeight in 2230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2230)
        0.09044133 = sum of:
          0.04881081 = weight(_text_:conference in 2230) [ClassicSimilarity], result of:
            0.04881081 = score(doc=2230,freq=2.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.25136417 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
          0.041630525 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
            0.041630525 = score(doc=2230,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.23214069 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
      0.6666667 = coord(2/3)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  4. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.09
    0.08780688 = product of:
      0.13171032 = sum of:
        0.054224722 = product of:
          0.16267416 = sum of:
            0.16267416 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16267416 = score(doc=701,freq=2.0), product of:
                0.43416977 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.051211275 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.0774856 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.0774856 = score(doc=701,freq=28.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.6666667 = coord(2/3)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  5. Aitken, S.; Reid, S.: Evaluation of an ontology-based information retrieval tool (2000) 0.08
    0.076917425 = product of:
      0.11537613 = sum of:
        0.08283559 = weight(_text_:retrieval in 2862) [ClassicSimilarity], result of:
          0.08283559 = score(doc=2862,freq=8.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.5347345 = fieldWeight in 2862, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=2862)
        0.032540537 = product of:
          0.065081075 = sum of:
            0.065081075 = weight(_text_:conference in 2862) [ClassicSimilarity], result of:
              0.065081075 = score(doc=2862,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.3351522 = fieldWeight in 2862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2862)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper evaluates the use of an explicit domain ontology in an information retrieval tool. The evaluation compares the performance of ontology-enhanced retrieval with keyword retrieval for a fixed set of queries across several data sets. The robustness of the IR approach is assessed by comparing the performance of the tool on the original data set with that on previously unseen data.
    Content
    Beitrag für: Workshop on the Applications of Ontologies and Problem-Solving Methods, (eds) Gómez-Pérez, A., Benjamins, V.R., Guarino, N., and Uschold, M. European Conference on Artificial Intelligence 2000, Berlin.
  6. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.07
    0.07021391 = product of:
      0.105320856 = sum of:
        0.08103638 = weight(_text_:retrieval in 4330) [ClassicSimilarity], result of:
          0.08103638 = score(doc=4330,freq=10.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.5231199 = fieldWeight in 4330, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.024284473 = product of:
          0.048568945 = sum of:
            0.048568945 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.048568945 = score(doc=4330,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
  7. Boteram, F.; Gödert, W.; Hubrich, J.: Semantic interoperability and retrieval paradigms (2010) 0.07
    0.06951885 = product of:
      0.10427827 = sum of:
        0.07173773 = weight(_text_:retrieval in 3362) [ClassicSimilarity], result of:
          0.07173773 = score(doc=3362,freq=6.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.46309367 = fieldWeight in 3362, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3362)
        0.032540537 = product of:
          0.065081075 = sum of:
            0.065081075 = weight(_text_:conference in 3362) [ClassicSimilarity], result of:
              0.065081075 = score(doc=3362,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.3351522 = fieldWeight in 3362, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3362)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents a new approach to understanding how indexing strategies, models for interoperability and retrieval paradigms interact in information systems and how this can be used to support the design and implementation of components of a semantic navigation for information retrieval systems.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO Conference, 23-26 February 2010 Rome, Italy. Edited by Claudio Gnoli and Fulvio Mazzocchi
  8. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.07
    0.068667434 = product of:
      0.10300115 = sum of:
        0.08218589 = weight(_text_:retrieval in 987) [ClassicSimilarity], result of:
          0.08218589 = score(doc=987,freq=14.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.5305404 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.020815263 = product of:
          0.041630525 = sum of:
            0.041630525 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.041630525 = score(doc=987,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Information retrieval
    RSWK
    Information Retrieval
    Subject
    Information retrieval
    Information Retrieval
  9. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.07
    0.0675026 = product of:
      0.1012539 = sum of:
        0.025886122 = weight(_text_:retrieval in 1434) [ClassicSimilarity], result of:
          0.025886122 = score(doc=1434,freq=2.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.16710453 = fieldWeight in 1434, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1434)
        0.07536778 = sum of:
          0.040675674 = weight(_text_:conference in 1434) [ClassicSimilarity], result of:
            0.040675674 = score(doc=1434,freq=2.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.20947012 = fieldWeight in 1434, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
          0.034692105 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
            0.034692105 = score(doc=1434,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.19345059 = fieldWeight in 1434, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
      0.6666667 = coord(2/3)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.06
    0.06376168 = product of:
      0.09564252 = sum of:
        0.054224722 = product of:
          0.16267416 = sum of:
            0.16267416 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16267416 = score(doc=5820,freq=2.0), product of:
                0.43416977 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.051211275 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.041417796 = weight(_text_:retrieval in 5820) [ClassicSimilarity], result of:
          0.041417796 = score(doc=5820,freq=8.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.26736724 = fieldWeight in 5820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.6666667 = coord(2/3)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  11. Information and communication technologies : international conference; proceedings / ICT 2010, Kochi, Kerala, India, September 7 - 9, 2010 (2010) 0.06
    0.061012506 = product of:
      0.09151876 = sum of:
        0.051251903 = weight(_text_:retrieval in 4784) [ClassicSimilarity], result of:
          0.051251903 = score(doc=4784,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.33085006 = fieldWeight in 4784, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4784)
        0.04026686 = product of:
          0.08053372 = sum of:
            0.08053372 = weight(_text_:conference in 4784) [ClassicSimilarity], result of:
              0.08053372 = score(doc=4784,freq=4.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.41472968 = fieldWeight in 4784, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4784)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book constitutes the proceedings of the International Conference on Information and Communication Technologies held in Kochi, Kerala, India in September 2010.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  12. Teskey, F.N.: Enriched knowledge representation for information retrieval (1987) 0.06
    0.06082899 = product of:
      0.09124348 = sum of:
        0.06277051 = weight(_text_:retrieval in 698) [ClassicSimilarity], result of:
          0.06277051 = score(doc=698,freq=6.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.40520695 = fieldWeight in 698, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=698)
        0.028472973 = product of:
          0.056945946 = sum of:
            0.056945946 = weight(_text_:conference in 698) [ClassicSimilarity], result of:
              0.056945946 = score(doc=698,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.2932582 = fieldWeight in 698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=698)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this paper we identify the need for a new theory of information. An information model is developed which distinguishes between data, as directly observable facts, information, as structured collections of data, and knowledge as methods of using information. The model is intended to support a wide range of information systems. In the paper we develop the use of the model for a semantic information retrieval system using the concept of semantic categories. The likely benefits of this area discussed, though as yet no detailed evaluation has been conducted.
    Source
    SIGIR'87: Proceedings of the 10th annual international ACM SIGIR conference on Research and development in information retrieval
  13. Padmavathi, T.; Krishnamurthy, M.: Ontological representation of knowledge for developing information services in food science and technology (2012) 0.06
    0.05768807 = product of:
      0.0865321 = sum of:
        0.062126692 = weight(_text_:retrieval in 839) [ClassicSimilarity], result of:
          0.062126692 = score(doc=839,freq=8.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.40105087 = fieldWeight in 839, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=839)
        0.024405405 = product of:
          0.04881081 = sum of:
            0.04881081 = weight(_text_:conference in 839) [ClassicSimilarity], result of:
              0.04881081 = score(doc=839,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.25136417 = fieldWeight in 839, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.046875 = fieldNorm(doc=839)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Knowledge explosion in various fields during recent years has resulted in the creation of vast amounts of on-line scientific literature. Food Science &Technology (FST) is also an important subject domain where rapid developments are taking place due to diverse research and development activities. As a result, information storage and retrieval has become very complex and current information retrieval systems (IRs) are being challenged in terms of both adequate precision and response time. To overcome these limitations as well as to provide naturallanguage based effective retrieval, a suitable knowledge engineering framework needs to be applied to represent, share and discover information. Semantic web technologies provide mechanisms for creating knowledge bases, ontologies and rules for handling data that promise to improve the quality of information retrieval. Ontologies are the backbone of such knowledge systems. This paper presents a framework for semantic representation of a large repository of content in the domain of FST.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  14. Gödert, W.: Facets and typed relations as tools for reasoning processes in information retrieval (2014) 0.05
    0.05314992 = product of:
      0.07972488 = sum of:
        0.051251903 = weight(_text_:retrieval in 1565) [ClassicSimilarity], result of:
          0.051251903 = score(doc=1565,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.33085006 = fieldWeight in 1565, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1565)
        0.028472973 = product of:
          0.056945946 = sum of:
            0.056945946 = weight(_text_:conference in 1565) [ClassicSimilarity], result of:
              0.056945946 = score(doc=1565,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.2932582 = fieldWeight in 1565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1565)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Faceted arrangement of entities and typed relations for representing different associations between the entities are established tools in knowledge representation. In this paper, a proposal is being discussed combining both tools to draw inferences along relational paths. This approach may yield new benefit for information retrieval processes, especially when modeled for heterogeneous environments in the Semantic Web. Faceted arrangement can be used as a selection tool for the semantic knowledge modeled within the knowledge representation. Typed relations between the entities of different facets can be used as restrictions for selecting them across the facets.
    Source
    Metadata and semantics research: 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings. Eds.: S. Closs et al
  15. Drexel, G.: Knowledge engineering for intelligent information retrieval (2001) 0.05
    0.052139133 = product of:
      0.0782087 = sum of:
        0.0538033 = weight(_text_:retrieval in 4043) [ClassicSimilarity], result of:
          0.0538033 = score(doc=4043,freq=6.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.34732026 = fieldWeight in 4043, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4043)
        0.024405405 = product of:
          0.04881081 = sum of:
            0.04881081 = weight(_text_:conference in 4043) [ClassicSimilarity], result of:
              0.04881081 = score(doc=4043,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.25136417 = fieldWeight in 4043, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4043)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents a clustered approach to designing an overall ontological model together with a general rule-based component that serves as a mapping device. By observational criteria, a multi-lingual team of experts excerpts concepts from general communication in the media. The team, then, finds equivalent expressions in English, German, French, and Spanish. On the basis of a set of ontological and lexical relations, a conceptual network is built up. Concepts are thought to be universal. Objects unique in time and space are identified by names and will be explained by the universals as their instances. Our approach relies on multi-relational descriptions of concepts. It provides a powerful tool for documentation and conceptual language learning. First and foremost, our multi-lingual, polyhierarchical ontology fills the gap of semantically-based information retrieval by generating enhanced and improved queries for internet search
    Source
    Computational linguistics and intelligent text processing: second international conference; Proceedings. CICLing 2001, Mexico City, Mexiko, 18.-24.2.2001. Ed.: Alexander Gelbukh
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  16. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.05
    0.052139133 = product of:
      0.0782087 = sum of:
        0.0538033 = weight(_text_:retrieval in 439) [ClassicSimilarity], result of:
          0.0538033 = score(doc=439,freq=6.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.34732026 = fieldWeight in 439, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.024405405 = product of:
          0.04881081 = sum of:
            0.04881081 = weight(_text_:conference in 439) [ClassicSimilarity], result of:
              0.04881081 = score(doc=439,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.25136417 = fieldWeight in 439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book constitutes the refereed proceedings of the Second European Semantic Web Conference, ESWC 2005, heldin Heraklion, Crete, Greece in May/June 2005. The 48 revised full papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections on semantic Web services, languages, ontologies, reasoning and querying, search and information retrieval, user and communities, natural language for the semantic Web, annotation tools, and semantic Web applications.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  17. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.05
    0.050357588 = product of:
      0.07553638 = sum of:
        0.051251903 = weight(_text_:retrieval in 4324) [ClassicSimilarity], result of:
          0.051251903 = score(doc=4324,freq=4.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.33085006 = fieldWeight in 4324, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.024284473 = product of:
          0.048568945 = sum of:
            0.048568945 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.048568945 = score(doc=4324,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    11. 2.2011 18:22:25
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  18. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.05
    0.05024519 = product of:
      0.15073556 = sum of:
        0.15073556 = sum of:
          0.08135135 = weight(_text_:conference in 539) [ClassicSimilarity], result of:
            0.08135135 = score(doc=539,freq=2.0), product of:
              0.19418365 = queryWeight, product of:
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.051211275 = queryNorm
              0.41894025 = fieldWeight in 539, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7918143 = idf(docFreq=2710, maxDocs=44218)
                0.078125 = fieldNorm(doc=539)
          0.06938421 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
            0.06938421 = score(doc=539,freq=2.0), product of:
              0.17933317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051211275 = queryNorm
              0.38690117 = fieldWeight in 539, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=539)
      0.33333334 = coord(1/3)
    
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
    Date
    26.12.2011 13:22:07
  19. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.05
    0.04974571 = product of:
      0.07461856 = sum of:
        0.0538033 = weight(_text_:retrieval in 3261) [ClassicSimilarity], result of:
          0.0538033 = score(doc=3261,freq=6.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.34732026 = fieldWeight in 3261, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3261)
        0.020815263 = product of:
          0.041630525 = sum of:
            0.041630525 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.041630525 = score(doc=3261,freq=2.0), product of:
                0.17933317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051211275 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Ontologies improve IR systems regarding its retrieval and presentation of information, which make the task of finding information more effective, efficient, and interactive. In this paper we argue that ontologies also greatly improve the engineering of such systems. We created a framework that uses ontology to drive the process of engineering an IR system. We developed a prototype that shows how a domain specialist without knowledge in the IR field can build an IR system with interactive components. The resulting system provides support for users not only to find their information needs but also to extend their state of knowledge. This way, our approach to ontology-enabled information retrieval addresses both the engineering aspect described here and also the usability aspect described elsewhere.
    Date
    28.11.2016 12:43:22
  20. Saruladha, K.; Aghila, G.; Penchala, S.K.: Design of new indexing techniques based on ontology for information retrieval systems (2010) 0.05
    0.04807339 = product of:
      0.07211008 = sum of:
        0.051772244 = weight(_text_:retrieval in 4317) [ClassicSimilarity], result of:
          0.051772244 = score(doc=4317,freq=8.0), product of:
            0.15490976 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.051211275 = queryNorm
            0.33420905 = fieldWeight in 4317, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4317)
        0.020337837 = product of:
          0.040675674 = sum of:
            0.040675674 = weight(_text_:conference in 4317) [ClassicSimilarity], result of:
              0.040675674 = score(doc=4317,freq=2.0), product of:
                0.19418365 = queryWeight, product of:
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.051211275 = queryNorm
                0.20947012 = fieldWeight in 4317, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7918143 = idf(docFreq=2710, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4317)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Information Retrieval [IR] is the science of searching for documents, for information within documents, and for metadata about documents, as well as that of searching relational databases and the World Wide Web. This paper describes a document representation method instead of keywords ontological descriptors. The purpose of this paper is to propose a system for content-based querying of texts based on the availability of ontology for the concepts in the text domain and to develop new Indexing methods to improve RSV (Retrieval status value). There is a need for querying ontologies at various granularities to retrieve information from various sources to suit the requirements of Semantic web, to eradicate the mismatch between user request and response from the Information Retrieval system. Most of the search engines use indexes that are built at the syntactical level and return hits based on simple string comparisons. The indexes do not contain synonyms, cannot differentiate between homonyms and users receive different search results when they use different conjugation forms of the same word.
    Source
    Information and communication technologies: international conference; proceedings / ICT 2010, Kochi, Kerala, India, September 7 - 9, 2010. Ed.: V.V. Das

Authors

Years

Languages

  • e 231
  • d 34
  • pt 2
  • f 1
  • More… Less…

Types

  • a 198
  • el 70
  • m 26
  • x 16
  • s 11
  • r 3
  • n 2
  • p 2
  • A 1
  • EL 1
  • More… Less…

Subjects

Classifications