Search (14 results, page 1 of 1)

  • × author_ss:"Bornmann, L."
  1. Bornmann, L.: On the function of university rankings (2014) 0.01
    0.0053372756 = product of:
      0.032023653 = sum of:
        0.032023653 = product of:
          0.06404731 = sum of:
            0.06404731 = weight(_text_:29 in 1188) [ClassicSimilarity], result of:
              0.06404731 = score(doc=1188,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.46638384 = fieldWeight in 1188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    29. 1.2014 16:55:03
  2. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.01
    0.0052892636 = product of:
      0.03173558 = sum of:
        0.03173558 = product of:
          0.06347116 = sum of:
            0.06347116 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.06347116 = score(doc=1239,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    18. 3.2014 19:13:22
  3. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.00
    0.0035261759 = product of:
      0.021157054 = sum of:
        0.021157054 = product of:
          0.04231411 = sum of:
            0.04231411 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.04231411 = score(doc=1431,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 8.2014 17:05:18
  4. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.00
    0.0034859132 = product of:
      0.020915478 = sum of:
        0.020915478 = product of:
          0.041830957 = sum of:
            0.041830957 = weight(_text_:methods in 4767) [ClassicSimilarity], result of:
              0.041830957 = score(doc=4767,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.26651827 = fieldWeight in 4767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4767)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
  5. Bornmann, L.: What is societal impact of research and how can it be assessed? : a literature survey (2013) 0.00
    0.0034859132 = product of:
      0.020915478 = sum of:
        0.020915478 = product of:
          0.041830957 = sum of:
            0.041830957 = weight(_text_:methods in 606) [ClassicSimilarity], result of:
              0.041830957 = score(doc=606,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.26651827 = fieldWeight in 606, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=606)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Since the 1990s, the scope of research evaluations becomes broader as the societal products (outputs), societal use (societal references), and societal benefits (changes in society) of research come into scope. Society can reap the benefits of successful research studies only if the results are converted into marketable and consumable products (e.g., medicaments, diagnostic tools, machines, and devices) or services. A series of different names have been introduced which refer to the societal impact of research: third stream activities, societal benefits, societal quality, usefulness, public values, knowledge transfer, and societal relevance. What most of these names are concerned with is the assessment of social, cultural, environmental, and economic returns (impact and effects) from results (research output) or products (research outcome) of publicly funded research. This review intends to present existing research on and practices employed in the assessment of societal impact in the form of a literature survey. The objective is for this review to serve as a basis for the development of robust and reliable methods of societal impact measurement.
  6. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.00
    0.0034859132 = product of:
      0.020915478 = sum of:
        0.020915478 = product of:
          0.041830957 = sum of:
            0.041830957 = weight(_text_:methods in 1108) [ClassicSimilarity], result of:
              0.041830957 = score(doc=1108,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.26651827 = fieldWeight in 1108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1108)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
  7. Bornmann, L.; Marx, W.: Distributions instead of single numbers : percentiles and beam plots for the assessment of single researchers (2014) 0.00
    0.003113411 = product of:
      0.018680464 = sum of:
        0.018680464 = product of:
          0.03736093 = sum of:
            0.03736093 = weight(_text_:29 in 1190) [ClassicSimilarity], result of:
              0.03736093 = score(doc=1190,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.27205724 = fieldWeight in 1190, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1190)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    29. 1.2014 15:58:21
  8. Ye, F.Y.; Bornmann, L.: "Smart girls" versus "sleeping beauties" in the sciences : the identification of instant and delayed recognition by using the citation angle (2018) 0.00
    0.0029049278 = product of:
      0.017429566 = sum of:
        0.017429566 = product of:
          0.034859132 = sum of:
            0.034859132 = weight(_text_:methods in 2160) [ClassicSimilarity], result of:
              0.034859132 = score(doc=2160,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.22209854 = fieldWeight in 2160, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2160)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    In recent years, a number of studies have introduced methods for identifying papers with delayed recognition (so called "sleeping beauties," SBs) or have presented single publications as cases of SBs. Most recently, Ke, Ferrara, Radicchi, and Flammini (2015, Proceedings of the National Academy of Sciences of the USA, 112(24), 7426-7431) proposed the so called "beauty coefficient" (denoted as B) to quantify how much a given paper can be considered as a paper with delayed recognition. In this study, the new term smart girl (SG) is suggested to differentiate instant credit or "flashes in the pan" from SBs. Although SG and SB are qualitatively defined, the dynamic citation angle ß is introduced in this study as a simple way for identifying SGs and SBs quantitatively - complementing the beauty coefficient B. The citation angles for all articles from 1980 (n?=?166,870) in natural sciences are calculated for identifying SGs and SBs and their extent. We reveal that about 3% of the articles are typical SGs and about 0.1% typical SBs. The potential advantages of the citation angle approach are explained.
  9. Bornmann, L.; Thor, A.; Marx, W.; Schier, H.: ¬The application of bibliometrics to research evaluation in the humanities and social sciences : an exploratory study using normalized Google Scholar data for the publications of a research institute (2016) 0.00
    0.0029049278 = product of:
      0.017429566 = sum of:
        0.017429566 = product of:
          0.034859132 = sum of:
            0.034859132 = weight(_text_:methods in 3160) [ClassicSimilarity], result of:
              0.034859132 = score(doc=3160,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.22209854 = fieldWeight in 3160, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3160)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    In the humanities and social sciences, bibliometric methods for the assessment of research performance are (so far) less common. This study uses a concrete example in an attempt to evaluate a research institute from the area of social sciences and humanities with the help of data from Google Scholar (GS). In order to use GS for a bibliometric study, we developed procedures for the normalization of citation impact, building on the procedures of classical bibliometrics. In order to test the convergent validity of the normalized citation impact scores, we calculated normalized scores for a subset of the publications based on data from the Web of Science (WoS) and Scopus. Even if scores calculated with the help of GS and the WoS/Scopus are not identical for the different publication types (considered here), they are so similar that they result in the same assessment of the institute investigated in this study: For example, the institute's papers whose journals are covered in the WoS are cited at about an average rate (compared with the other papers in the journals).
  10. Bornmann, L.; Ye, A.; Ye, F.: Identifying landmark publications in the long run using field-normalized citation data (2018) 0.00
    0.0029049278 = product of:
      0.017429566 = sum of:
        0.017429566 = product of:
          0.034859132 = sum of:
            0.034859132 = weight(_text_:methods in 4196) [ClassicSimilarity], result of:
              0.034859132 = score(doc=4196,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.22209854 = fieldWeight in 4196, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4196)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The purpose of this paper is to propose an approach for identifying landmark papers in the long run. These publications reach a very high level of citation impact and are able to remain on this level across many citing years. In recent years, several studies have been published which deal with the citation history of publications and try to identify landmark publications. Design/methodology/approach In contrast to other studies published hitherto, this study is based on a broad data set with papers published between 1980 and 1990 for identifying the landmark papers. The authors analyzed the citation histories of about five million papers across 25 years. Findings The results of this study reveal that 1,013 papers (less than 0.02 percent) are "outstandingly cited" in the long run. The cluster analyses of the papers show that they received the high impact level very soon after publication and remained on this level over decades. Only a slight impact decline is visible over the years. Originality/value For practical reasons, approaches for identifying landmark papers should be as simple as possible. The approach proposed in this study is based on standard methods in bibliometrics.
  11. Bornmann, L.: How to analyze percentile citation impact data meaningfully in bibliometrics : the statistical analysis of distributions, percentile rank classes, and top-cited papers (2013) 0.00
    0.0026446318 = product of:
      0.01586779 = sum of:
        0.01586779 = product of:
          0.03173558 = sum of:
            0.03173558 = weight(_text_:22 in 656) [ClassicSimilarity], result of:
              0.03173558 = score(doc=656,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.23214069 = fieldWeight in 656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=656)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 3.2013 19:44:17
  12. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.00
    0.0026446318 = product of:
      0.01586779 = sum of:
        0.01586779 = product of:
          0.03173558 = sum of:
            0.03173558 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.03173558 = score(doc=4681,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    8. 1.2019 18:22:45
  13. Bornmann, L.; Schier, H.; Marx, W.; Daniel, H.-D.: Is interactive open access publishing able to identify high-impact submissions? : a study on the predictive validity of Atmospheric Chemistry and Physics by using percentile rank classes (2011) 0.00
    0.0022238651 = product of:
      0.01334319 = sum of:
        0.01334319 = product of:
          0.02668638 = sum of:
            0.02668638 = weight(_text_:29 in 4132) [ClassicSimilarity], result of:
              0.02668638 = score(doc=4132,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.19432661 = fieldWeight in 4132, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4132)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    8. 1.2011 18:29:40
  14. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.00
    0.0022038599 = product of:
      0.013223159 = sum of:
        0.013223159 = product of:
          0.026446318 = sum of:
            0.026446318 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.026446318 = score(doc=4186,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 1.2011 12:51:07