Search (7 results, page 1 of 1)

  • × year_i:[2000 TO 2010}
  • × author_ss:"Gnoli, C."
  1. Szostak, R.; Gnoli, C.: Classifying by phenomena, theories and methods : examples with focused social science theories (2008) 0.02
    0.020439826 = product of:
      0.061319478 = sum of:
        0.036918085 = product of:
          0.07383617 = sum of:
            0.07383617 = weight(_text_:theory in 2250) [ClassicSimilarity], result of:
              0.07383617 = score(doc=2250,freq=4.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.45482418 = fieldWeight in 2250, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2250)
          0.5 = coord(1/2)
        0.024401393 = product of:
          0.048802786 = sum of:
            0.048802786 = weight(_text_:methods in 2250) [ClassicSimilarity], result of:
              0.048802786 = score(doc=2250,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.31093797 = fieldWeight in 2250, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2250)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Content
    This paper shows how a variety of theories employed across a range of social sciences could be classified in terms of theory type. In each case, notation within the Integrated Level Classification is provided. The paper thus illustrates how one key element of the Leon Manifesto that scholarly documents should be classified in terms of the theory(ies) applied can be achieved in practice.
  2. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.01
    0.012795856 = product of:
      0.07677513 = sum of:
        0.07677513 = sum of:
          0.044751476 = weight(_text_:theory in 2663) [ClassicSimilarity], result of:
            0.044751476 = score(doc=2663,freq=2.0), product of:
              0.16234003 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.03903913 = queryNorm
              0.27566507 = fieldWeight in 2663, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.046875 = fieldNorm(doc=2663)
          0.032023653 = weight(_text_:29 in 2663) [ClassicSimilarity], result of:
            0.032023653 = score(doc=2663,freq=2.0), product of:
              0.13732746 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.03903913 = queryNorm
              0.23319192 = fieldWeight in 2663, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.046875 = fieldNorm(doc=2663)
      0.16666667 = coord(1/6)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
    Date
    29. 8.2004 17:33:13
  3. Gnoli, C.: Facets: a fruitful notion in many domains (2008) 0.00
    0.0046478845 = product of:
      0.027887305 = sum of:
        0.027887305 = product of:
          0.05577461 = sum of:
            0.05577461 = weight(_text_:methods in 49) [ClassicSimilarity], result of:
              0.05577461 = score(doc=49,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.35535768 = fieldWeight in 49, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0625 = fieldNorm(doc=49)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    This special issue of ''Axiomathes'' is devoted to a technique originally developed within library science: facet analysis. During discussions with Roberto Poli, it was realized that facet analysis shares interesting features with analytical methods in several other fields, including philosophy, psychology, linguistics, and computer science. For these reasons, in an interdisciplinary spirit, we believe that facet analysis is a relevant topic for the scope of this journal. It is hoped that readers will be persuaded by this after examining the present contributions.
  4. Gnoli, C.; Szostak, R.: ¬The Leon Manifesto (2007) 0.00
    0.004108188 = product of:
      0.024649128 = sum of:
        0.024649128 = product of:
          0.049298257 = sum of:
            0.049298257 = weight(_text_:methods in 661) [ClassicSimilarity], result of:
              0.049298257 = score(doc=661,freq=4.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.31409478 = fieldWeight in 661, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=661)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Some relevant proposals regarding the future of knowledge organization emerged during the 8th conference of the ISKO Spanish chapter, which took place in the beautiful, lively atmosphere of the town of León, between 18 and 20 of April 2007. These proposals are here labeled as "the Leon manifesto", and can be summarized in the following points: - the current trend towards an increasing interdisciplinarity of knowledge calls for essentially new knowledge organization systems (KOS), based on a substantive revision of the principles underlying the traditional discipline-based KOS; - this innovation is not only desirable, but also feasible, and should be implemented by actually developing some new KOS; instead of disciplines, the basic unity of the new KOS should be phenomena of the real world as it is represented in human knowledge; - the new KOS should allow users to shift from one perspective or viewpoint to another, thus reflecting the multidimensional nature of complex thought. In particular, it should allow them to search independently for particular phenomena, for particular theories about phenomena (and about relations between phenomena), and for particular methods of investigation; - the connections between phenomena, those between phenomena and the theories studying them, and those between phenomena and the methods to investigate them, can be expressed and managed by analytico-synthetic techniques already developed in faceted classification.
  5. Gnoli, C.: Categories and facets in integrative levels (2008) 0.00
    0.0037292899 = product of:
      0.022375738 = sum of:
        0.022375738 = product of:
          0.044751476 = sum of:
            0.044751476 = weight(_text_:theory in 1806) [ClassicSimilarity], result of:
              0.044751476 = score(doc=1806,freq=2.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.27566507 = fieldWeight in 1806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1806)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  6. Gnoli, C.: Phylogenetic classification (2006) 0.00
    0.0026686378 = product of:
      0.016011827 = sum of:
        0.016011827 = product of:
          0.032023653 = sum of:
            0.032023653 = weight(_text_:29 in 164) [ClassicSimilarity], result of:
              0.032023653 = score(doc=164,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.23319192 = fieldWeight in 164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=164)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    11. 3.2007 14:19:29
  7. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    0.0022238651 = product of:
      0.01334319 = sum of:
        0.01334319 = product of:
          0.02668638 = sum of:
            0.02668638 = weight(_text_:29 in 2527) [ClassicSimilarity], result of:
              0.02668638 = score(doc=2527,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.19432661 = fieldWeight in 2527, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2527)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Source
    Extensions and corrections to the UDC. 29(2007), S.167-182