Search (10 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  1. Ding, Y.: Scholarly communication and bibliometrics : Part 1: The scholarly communication model: literature review (1998) 0.00
    0.004886682 = product of:
      0.019546729 = sum of:
        0.019546729 = product of:
          0.058640182 = sum of:
            0.058640182 = weight(_text_:29 in 3995) [ClassicSimilarity], result of:
              0.058640182 = score(doc=3995,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.38865322 = fieldWeight in 3995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3995)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    International forum on information and documentation. 23(1998) no.2, S.20-29
  2. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.00
    0.0033899057 = product of:
      0.013559623 = sum of:
        0.013559623 = product of:
          0.040678866 = sum of:
            0.040678866 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.040678866 = score(doc=4188,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    22. 1.2011 13:02:21
  3. Lin, N.; Li, D.; Ding, Y.; He, B.; Qin, Z.; Tang, J.; Li, J.; Dong, T.: ¬The dynamic features of Delicious, Flickr, and YouTube (2012) 0.00
    0.0032300155 = product of:
      0.012920062 = sum of:
        0.012920062 = product of:
          0.038760185 = sum of:
            0.038760185 = weight(_text_:systems in 4970) [ClassicSimilarity], result of:
              0.038760185 = score(doc=4970,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.29405114 = fieldWeight in 4970, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4970)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    This article investigates the dynamic features of social tagging vocabularies in Delicious, Flickr, and YouTube from 2003 to 2008. Three algorithms are designed to study the macro- and micro-tag growth as well as the dynamics of taggers' activities, respectively. Moreover, we propose a Tagger Tag Resource Latent Dirichlet Allocation (TTR-LDA) model to explore the evolution of topics emerging from those social vocabularies. Our results show that (a) at the macro level, tag growth in all the three tagging systems obeys power law distribution with exponents lower than 1; at the micro level, the tag growth of popular resources in all three tagging systems follows a similar power law distribution; (b) the exponents of tag growth vary in different evolving stages of resources; (c) the growth of number of taggers associated with different popular resources presents a feature of convergence over time; (d) the active level of taggers has a positive correlation with the macro-tag growth of different tagging systems; and (e) some topics evolve into several subtopics over time while others experience relatively stable stages in which their contents do not change much, and certain groups of taggers continue their interests in them.
  4. Klein, M.; Ding, Y.; Fensel, D.; Omelayenko, B.: Ontology management : storing, aligning and maintaining ontologies (2004) 0.00
    0.00298376 = product of:
      0.01193504 = sum of:
        0.01193504 = product of:
          0.03580512 = sum of:
            0.03580512 = weight(_text_:systems in 4402) [ClassicSimilarity], result of:
              0.03580512 = score(doc=4402,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2716328 = fieldWeight in 4402, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4402)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Support for evolving ontologies is required in almost all situations where ontologies are used in real-world applications. In those cases, ontologies are often developed by several persons and will continue to evolve over time, because of changes in the real world, adaptations to different tasks, or alignments to other ontologies. To prevent that such changes will invalidate existing usage, a change management methodology is needed. This involves advanced versioning methods for the development and the maintenance of ontologies, but also configuration management, that takes care of the identification, relations and interpretation of ontology versions. All these aspects come together in integrated ontology library systems. When the number of different ontologies is increasing, the task of storing, maintaining and re-organizing them to secure the successful re-use of ontologies is challenging. Ontology library systems can help in the grouping and reorganizing ontologies for further re-use, integration, maintenance, mapping and versioning. Basically, a library system offers various functions for managing, adapting and standardizing groups of ontologies. Such integrated systems are a requirement for the Semantic Web to grow further and scale up. In this chapter, we describe a number of results with respect to the above mentioned areas. We start with a description of the alignment task and show a meta-ontology that is developed to specify the mappings. Then, we discuss the problems that are caused by evolving ontologies and describe two important elements of a change management methodology. Finally, in Section 4.4 we survey existing library systems and formulate a wish-list of features of an ontology library system.
  5. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.00
    0.002932009 = product of:
      0.011728036 = sum of:
        0.011728036 = product of:
          0.035184108 = sum of:
            0.035184108 = weight(_text_:29 in 1202) [ClassicSimilarity], result of:
              0.035184108 = score(doc=1202,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23319192 = fieldWeight in 1202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    29. 1.2014 16:40:41
  6. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.00
    0.0029056333 = product of:
      0.011622533 = sum of:
        0.011622533 = product of:
          0.0348676 = sum of:
            0.0348676 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.0348676 = score(doc=1521,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    22. 8.2014 16:52:04
  7. Li, D.; Ding, Y.; Sugimoto, C.; He, B.; Tang, J.; Yan, E.; Lin, N.; Qin, Z.; Dong, T.: Modeling topic and community structure in social tagging : the TTR-LDA-Community model (2011) 0.00
    0.0026372964 = product of:
      0.010549186 = sum of:
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 4759) [ClassicSimilarity], result of:
              0.031647556 = score(doc=4759,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 4759, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4759)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The presence of social networks in complex systems has made networks and community structure a focal point of study in many domains. Previous studies have focused on the structural emergence and growth of communities and on the topics displayed within the network. However, few scholars have closely examined the relationship between the thematic and structural properties of networks. Therefore, this article proposes the Tagger Tag Resource-Latent Dirichlet Allocation-Community model (TTR-LDA-Community model), which combines the Latent Dirichlet Allocation (LDA) model with the Girvan-Newman community detection algorithm through an inference mechanism. Using social tagging data from Delicious, this article demonstrates the clustering of active taggers into communities, the topic distributions within communities, and the ranking of taggers, tags, and resources within these communities. The data analysis evaluates patterns in community structure and topical affiliations diachronically. The article evaluates the effectiveness of community detection and the inference mechanism embedded in the model and finds that the TTR-LDA-Community model outperforms other traditional models in tag prediction. This has implications for scholars in domains interested in community detection, profiling, and recommender systems.
  8. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.00
    0.002443341 = product of:
      0.009773364 = sum of:
        0.009773364 = product of:
          0.029320091 = sum of:
            0.029320091 = weight(_text_:29 in 4445) [ClassicSimilarity], result of:
              0.029320091 = score(doc=4445,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19432661 = fieldWeight in 4445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4445)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    29. 9.2018 13:24:10
  9. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.002443341 = product of:
      0.009773364 = sum of:
        0.009773364 = product of:
          0.029320091 = sum of:
            0.029320091 = weight(_text_:29 in 633) [ClassicSimilarity], result of:
              0.029320091 = score(doc=633,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19432661 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.
  10. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.00
    0.0022378203 = product of:
      0.008951281 = sum of:
        0.008951281 = product of:
          0.026853843 = sum of:
            0.026853843 = weight(_text_:systems in 3421) [ClassicSimilarity], result of:
              0.026853843 = score(doc=3421,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2037246 = fieldWeight in 3421, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3421)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).