Search (136 results, page 1 of 7)

  • × theme_ss:"Semantic Web"
  1. Linked data and user interaction : the road ahead (2015) 0.08
    0.077203326 = product of:
      0.15440665 = sum of:
        0.14385746 = weight(_text_:interfaces in 2552) [ClassicSimilarity], result of:
          0.14385746 = score(doc=2552,freq=10.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.6436627 = fieldWeight in 2552, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2552)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 2552) [ClassicSimilarity], result of:
              0.031647556 = score(doc=2552,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 2552, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2552)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    This collection of research papers provides extensive information on deploying services, concepts, and approaches for using open linked data from libraries and other cultural heritage institutions. With a special emphasis on how libraries and other cultural heritage institutions can create effective end user interfaces using open, linked data or other datasets. These papers are essential reading for any one interesting in user interface design or the semantic web.
    Content
    H. Frank Cervone: Linked data and user interaction : an introduction -- Paola Di Maio: Linked Data Beyond Libraries Towards Universal Interfaces and Knowledge Unification -- Emmanuelle Bermes: Following the user's flow in the Digital Pompidou -- Patrick Le Bceuf: Customized OPACs on the Semantic Web : the OpenCat prototype -- Ryan Shaw, Patrick Golden and Michael Buckland: Using linked library data in working research notes -- Timm Heuss, Bernhard Humm.Tilman Deuschel, Torsten Frohlich, Thomas Herth and Oliver Mitesser: Semantically guided, situation-aware literature research -- Niklas Lindstrom and Martin Malmsten: Building interfaces on a networked graph -- Natasha Simons, Arve Solland and Jan Hettenhausen: Griffith Research Hub. Vgl.: http://d-nb.info/1032799889.
    LCSH
    User interfaces (Computer systems)
    Subject
    User interfaces (Computer systems)
  2. Shaw, R.; Buckland, M.: Open identification and linking of the four Ws (2008) 0.04
    0.042390935 = product of:
      0.08478187 = sum of:
        0.07800206 = weight(_text_:interfaces in 2665) [ClassicSimilarity], result of:
          0.07800206 = score(doc=2665,freq=6.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.34900528 = fieldWeight in 2665, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2665)
        0.0067798113 = product of:
          0.020339433 = sum of:
            0.020339433 = weight(_text_:22 in 2665) [ClassicSimilarity], result of:
              0.020339433 = score(doc=2665,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1354154 = fieldWeight in 2665, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2665)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Platforms for social computing connect users via shared references to people with whom they have relationships, events attended, places lived in or traveled to, and topics such as favorite books or movies. Since free text is insufficient for expressing such references precisely and unambiguously, many social computing platforms coin identifiers for topics, places, events, and people and provide interfaces for finding and selecting these identifiers from controlled lists. Using these interfaces, users collaboratively construct a web of links among entities. This model needn't be limited to social networking sites. Understanding an item in a digital library or museum requires context: information about the topics, places, events, and people to which the item is related. Students, journalists and investigators traditionally discover this kind of context by asking "the four Ws": what, where, when and who. The DCMI Kernel Metadata Community has recognized the four Ws as fundamental elements of descriptions (Kunze & Turner, 2007). Making better use of metadata to answer these questions via links to appropriate contextual resources has been our focus in a series of research projects over the past few years. Currently we are building a system for enabling readers of any text to relate any topic, place, event or person mentioned in the text to the best explanatory resources available. This system is being developed with two different corpora: a diverse variety of biographical texts characterized by very rich and dense mentions of people, events, places and activities, and a large collection of newly-scanned books, journals and manuscripts relating to Irish culture and history. Like a social computing platform, our system consists of tools for referring to topics, places, events or people, disambiguating these references by linking them to unique identifiers, and using the disambiguated references to provide useful information in context and to link to related resources. Yet current social computing platforms, while usually amenable to importing and exporting data, tend to mint proprietary identifiers and expect links to be traversed using their own interfaces. We take a different approach, using identifiers from both established and emerging naming authorities, representing relationships using standardized metadata vocabularies, and publishing those representations using standard protocols so that links can be stored and traversed anywhere. Central to our strategy is to move from appearances in a text to naming authorities to the the construction of links for searching or querying trusted resources. Using identifiers from naming authorities, rather than literal values (as in the DCMI Kernel) or keys from a proprietary database, makes it more likely that links constructed using our system will continue to be useful in the future. WorldCat Identities URIs (http://worldcat.org/identities/) linked to Library of Congress and Deutsche Nationalbibliothek authority files for persons and organizations and Geonames (http://geonames.org/) URIs for places are stable identifiers attached to a wealth of useful metadata. Yet no naming authority can be totally comprehensive, so our system can be extended to use new sources of identifiers as needed. For example, we are experimenting with using Freebase (http://freebase.com/) URIs to identify historical events, for which no established naming authority currently exists. Stable identifiers (URIs), standardized hyperlinked data formats (XML), and uniform publishing protocols (HTTP) are key ingredients of the web's open architecture. Our system provides an example of how this open architecture can be exploited to build flexible and useful tools for connecting resources via shared references to topics, places, events, and people.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Di Maio, P.: Linked data beyond libraries : towards universal interfaces and knowledge unification (2015) 0.04
    0.038601004 = product of:
      0.15440401 = sum of:
        0.15440401 = weight(_text_:interfaces in 2553) [ClassicSimilarity], result of:
          0.15440401 = score(doc=2553,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.6908512 = fieldWeight in 2553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.09375 = fieldNorm(doc=2553)
      0.25 = coord(1/4)
    
  4. Zenz, G.; Zhou, X.; Minack, E.; Siberski, W.; Nejdl, W.: Interactive query construction for keyword search on the Semantic Web (2012) 0.04
    0.037442096 = product of:
      0.07488419 = sum of:
        0.064335 = weight(_text_:interfaces in 430) [ClassicSimilarity], result of:
          0.064335 = score(doc=430,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 430, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=430)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 430) [ClassicSimilarity], result of:
              0.031647556 = score(doc=430,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 430, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=430)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    With the advance of the semantic Web, increasing amounts of data are available in a structured and machine-understandable form. This opens opportunities for users to employ semantic queries instead of simple keyword-based ones to accurately express the information need. However, constructing semantic queries is a demanding task for human users [11]. To compose a valid semantic query, a user has to (1) master a query language (e.g., SPARQL) and (2) acquire sufficient knowledge about the ontology or the schema of the data source. While there are systems which support this task with visual tools [21, 26] or natural language interfaces [3, 13, 14, 18], the process of query construction can still be complex and time consuming. According to [24], users prefer keyword search, and struggle with the construction of semantic queries although being supported with a natural language interface. Several keyword search approaches have already been proposed to ease information seeking on semantic data [16, 32, 35] or databases [1, 31]. However, keyword queries lack the expressivity to precisely describe the user's intent. As a result, ranking can at best put query intentions of the majority on top, making it impossible to take the intentions of all users into consideration.
    Series
    Data-centric systems and applications
  5. Bergamaschi, S.; Domnori, E.; Guerra, F.; Rota, S.; Lado, R.T.; Velegrakis, Y.: Understanding the semantics of keyword queries on relational data without accessing the instance (2012) 0.04
    0.037442096 = product of:
      0.07488419 = sum of:
        0.064335 = weight(_text_:interfaces in 431) [ClassicSimilarity], result of:
          0.064335 = score(doc=431,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=431)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 431) [ClassicSimilarity], result of:
              0.031647556 = score(doc=431,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 431, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=431)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    The birth of the Web has brought an exponential growth to the amount of the information that is freely available to the Internet population, overloading users and entangling their efforts to satisfy their information needs. Web search engines such Google, Yahoo, or Bing have become popular mainly due to the fact that they offer an easy-to-use query interface (i.e., based on keywords) and an effective and efficient query execution mechanism. The majority of these search engines do not consider information stored on the deep or hidden Web [9,28], despite the fact that the size of the deep Web is estimated to be much bigger than the surface Web [9,47]. There have been a number of systems that record interactions with the deep Web sources or automatically submit queries them (mainly through their Web form interfaces) in order to index their context. Unfortunately, this technique is only partially indexing the data instance. Moreover, it is not possible to take advantage of the query capabilities of data sources, for example, of the relational query features, because their interface is often restricted from the Web form. Besides, Web search engines focus on retrieving documents and not on querying structured sources, so they are unable to access information based on concepts.
    Series
    Data-centric systems and applications
  6. Harth, A.; Hogan, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing linked data with SWSE* (2012) 0.04
    0.035897203 = product of:
      0.071794406 = sum of:
        0.064335 = weight(_text_:interfaces in 410) [ClassicSimilarity], result of:
          0.064335 = score(doc=410,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 410, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=410)
        0.007459401 = product of:
          0.022378203 = sum of:
            0.022378203 = weight(_text_:systems in 410) [ClassicSimilarity], result of:
              0.022378203 = score(doc=410,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=410)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Web search engines such as Google, Yahoo! MSN/Bing, and Ask are far from the consummate Web search solution: they do not typically produce direct answers to queries but instead typically recommend a selection of related documents from the Web. We note that in more recent years, search engines have begun to provide direct answers to prose queries matching certain common templates-for example, "population of china" or "12 euro in dollars"-but again, such functionality is limited to a small subset of popular user queries. Furthermore, search engines now provide individual and focused search interfaces over images, videos, locations, news articles, books, research papers, blogs, and real-time social media-although these tools are inarguably powerful, they are limited to their respective domains. In the general case, search engines are not suitable for complex information gathering tasks requiring aggregation from multiple indexed documents: for such tasks, users must manually aggregate tidbits of pertinent information from various pages. In effect, such limitations are predicated on the lack of machine-interpretable structure in HTML-documents, which is often limited to generic markup tags mainly concerned with document renderign and linking. Most of the real content is contained in prose text which is inherently difficult for machines to interpret.
    Series
    Data-centric systems and applications
  7. Harlow, C.: Data munging tools in Preparation for RDF : Catmandu and LODRefine (2015) 0.04
    0.035897203 = product of:
      0.071794406 = sum of:
        0.064335 = weight(_text_:interfaces in 2277) [ClassicSimilarity], result of:
          0.064335 = score(doc=2277,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 2277, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2277)
        0.007459401 = product of:
          0.022378203 = sum of:
            0.022378203 = weight(_text_:systems in 2277) [ClassicSimilarity], result of:
              0.022378203 = score(doc=2277,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 2277, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2277)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Data munging, or the work of remediating, enhancing and transforming library datasets for new or improved uses, has become more important and staff-inclusive in many library technology discussions and projects. Many times we know how we want our data to look, as well as how we want our data to act in discovery interfaces or when exposed, but we are uncertain how to make the data we have into the data we want. This article introduces and compares two library data munging tools that can help: LODRefine (OpenRefine with the DERI RDF Extension) and Catmandu. The strengths and best practices of each tool are discussed in the context of metadata munging use cases for an institution's metadata migration workflow. There is a focus on Linked Open Data modeling and transformation applications of each tool, in particular how metadataists, catalogers, and programmers can create metadata quality reports, enhance existing data with LOD sets, and transform that data to a RDF model. Integration of these tools with other systems and projects, the use of domain specific transformation languages, and the expansion of vocabulary reconciliation services are mentioned.
  8. Eiter, T.; Kaminski, T.; Redl, C.; Schüller, P.; Weinzierl, A.: Answer set programming with external source access (2017) 0.04
    0.035897203 = product of:
      0.071794406 = sum of:
        0.064335 = weight(_text_:interfaces in 3938) [ClassicSimilarity], result of:
          0.064335 = score(doc=3938,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 3938, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3938)
        0.007459401 = product of:
          0.022378203 = sum of:
            0.022378203 = weight(_text_:systems in 3938) [ClassicSimilarity], result of:
              0.022378203 = score(doc=3938,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 3938, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3938)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Access to external information is an important need for Answer Set Programming (ASP), which is a booming declarative problem solving approach these days. External access not only includes data in different formats, but more general also the results of computations, and possibly in a two-way information exchange. Providing such access is a major challenge, and in particular if it should be supported at a generic level, both regarding the semantics and efficient computation. In this article, we consider problem solving with ASP under external information access using the dlvhex system. The latter facilitates this access through special external atoms, which are two-way API style interfaces between the rules of the program and an external source. The dlvhex system has a flexible plugin architecture that allows one to use multiple predefined and user-defined external atoms which can be implemented, e.g., in Python or C++. We consider how to solve problems using the ASP paradigm, and specifically discuss how to use external atoms in this context, illustrated by examples. As a showcase, we demonstrate the development of a hex program for a concrete real-world problem using Semantic Web technologies, and discuss specifics of the implementation process.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  9. Brambilla, M.; Ceri, S.: Designing exploratory search applications upon Web data sources (2012) 0.03
    0.03170152 = product of:
      0.06340304 = sum of:
        0.051468004 = weight(_text_:interfaces in 428) [ClassicSimilarity], result of:
          0.051468004 = score(doc=428,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.23028374 = fieldWeight in 428, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.03125 = fieldNorm(doc=428)
        0.01193504 = product of:
          0.03580512 = sum of:
            0.03580512 = weight(_text_:systems in 428) [ClassicSimilarity], result of:
              0.03580512 = score(doc=428,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2716328 = fieldWeight in 428, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=428)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Search is the preferred method to access information in today's computing systems. The Web, accessed through search engines, is universally recognized as the source for answering users' information needs. However, offering a link to a Web page does not cover all information needs. Even simple problems, such as "Which theater offers an at least three-stars action movie in London close to a good Italian restaurant," can only be solved by searching the Web multiple times, e.g., by extracting a list of the recent action movies filtered by ranking, then looking for movie theaters, then looking for Italian restaurants close to them. While search engines hint to useful information, the user's brain is the fundamental platform for information integration. An important trend is the availability of new, specialized data sources-the so-called "long tail" of the Web of data. Such carefully collected and curated data sources can be much more valuable than information currently available in Web pages; however, many sources remain hidden or insulated, in the lack of software solutions for bringing them to surface and making them usable in the search context. A new class of tailor-made systems, designed to satisfy the needs of users with specific aims, will support the publishing and integration of data sources for vertical domains; the user will be able to select sources based on individual or collective trust, and systems will be able to route queries to such sources and to provide easyto-use interfaces for combining them within search strategies, at the same time, rewarding the data source owners for each contribution to effective search. Efforts such as Google's Fusion Tables show that the technology for bringing hidden data sources to surface is feasible.
    Series
    Data-centric systems and applications
  10. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.02569169 = product of:
      0.05138338 = sum of:
        0.04541586 = product of:
          0.13624758 = sum of:
            0.13624758 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.13624758 = score(doc=701,freq=2.0), product of:
                0.36363843 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04289195 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.00596752 = product of:
          0.01790256 = sum of:
            0.01790256 = weight(_text_:systems in 701) [ClassicSimilarity], result of:
              0.01790256 = score(doc=701,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1358164 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  11. Web 2.0-Pionier ortet kollektive Intelligenz im Internet : Technologieschübe kommen über mobile Endgeräte und Spracherkennung (2007) 0.02
    0.023446988 = product of:
      0.046893977 = sum of:
        0.038601004 = weight(_text_:interfaces in 670) [ClassicSimilarity], result of:
          0.038601004 = score(doc=670,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.1727128 = fieldWeight in 670, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0234375 = fieldNorm(doc=670)
        0.008292975 = product of:
          0.024878923 = sum of:
            0.024878923 = weight(_text_:29 in 670) [ClassicSimilarity], result of:
              0.024878923 = score(doc=670,freq=4.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1648916 = fieldWeight in 670, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=670)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Content
    Die fehlenden Bausteine dafür seien jetzt schon verfügbar, so dass es nur eine Frage der Zeit seit, bis sich die Menschen weltweit an dieses neue Interface gewöhnt haben. "Die Spracherkennung im personalisierten Diktiermodus ist schon sehr weit gereift, die mobilen Datenzugriffe werden immer schneller und auch Flat-rates im Mobilfunk werden vermutlich bald genauso verbreitet sein wie im DSL-Geschäft", sagt Pape. Spannender werde es noch, wenn man in der nächsten Generation des Internets, dem SemanticWeb, auf eine gesprochene Frage nicht eine Flut von Weblinks angezeigt bekommt, sondern das Sprachdialogsystem gleich die richtige Antwort gibt. "Viele Informationen liegen bereits strukturiert vor wie Fahrplaninformationen, Telefonnummern, Sportergebnisse oder bewertete Restaurants und sonstige Adressen. Was fehlt, ist eine Art Yahoo des 'Voicewebs', über das sich jeder personalisiert seine gewünschten Angebote zusammenstellen und über Sprache oder Multimodale Interfaces abfragen kann.""
    Date
    29. 1.1997 18:49:05
    Source
    Wechselwirkung. 29(2007) Nr.141, S.11-12
  12. Binding, C.; Tudhope, D.: Terminology Web services (2010) 0.02
    0.019300502 = product of:
      0.07720201 = sum of:
        0.07720201 = weight(_text_:interfaces in 4067) [ClassicSimilarity], result of:
          0.07720201 = score(doc=4067,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.3454256 = fieldWeight in 4067, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.046875 = fieldNorm(doc=4067)
      0.25 = coord(1/4)
    
    Abstract
    Controlled terminologies such as classification schemes, name authorities, and thesauri have long been the domain of the library and information science community. Although historically there have been initiatives towards library style classification of web resources, there remain significant problems with searching and quality judgement of online content. Terminology services can play a key role in opening up access to these valuable resources. By exposing controlled terminologies via a web service, organisations maintain data integrity and version control, whilst motivating external users to design innovative ways to present and utilise their data. We introduce terminology web services and review work in the area. We describe the approaches taken in establishing application programming interfaces (API) and discuss the comparative benefits of a dedicated terminology web service versus general purpose programming languages. We discuss experiences at Glamorgan in creating terminology web services and associated client interface components, in particular for the archaeology domain in the STAR (Semantic Technologies for Archaeological Resources) Project.
  13. Fluit, C.; Horst, H. ter; Meer, J. van der; Sabou, M.; Mika, P.: Spectacle (2004) 0.02
    0.019300502 = product of:
      0.07720201 = sum of:
        0.07720201 = weight(_text_:interfaces in 4337) [ClassicSimilarity], result of:
          0.07720201 = score(doc=4337,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.3454256 = fieldWeight in 4337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.046875 = fieldNorm(doc=4337)
      0.25 = coord(1/4)
    
    Abstract
    Many Semantic Web initiatives improve the capabilities of machines to exchange the meaning of information with other machines. These efforts lead to an increased quality of the application's results, but their user interfaces take little or no advantage of the semantic richness. For example, an ontology-based search engine will use its ontology when evaluating the user's query (e.g. for query formulation, disambiguation or evaluation), but fails to use it to significantly enrich the presentation of the results to a human user. For example, one could imagine replacing the endless list of hits with a structured presentation based on the semantic properties of the hits. Another problem is that the modelling of a domain is done from a single perspective (most often that of the information provider). Therefore, presentation based on the resulting ontology is unlikely to satisfy the needs of all the different types of users of the information. So even assuming an ontology for the domain is in place, mapping that ontology to the needs of individual users - based on their tasks, expertise and personal preferences - is not trivial.
  14. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.02
    0.017860413 = product of:
      0.07144165 = sum of:
        0.07144165 = sum of:
          0.02215329 = weight(_text_:systems in 1155) [ClassicSimilarity], result of:
            0.02215329 = score(doc=1155,freq=4.0), product of:
              0.13181444 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.04289195 = queryNorm
              0.16806422 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
          0.020524062 = weight(_text_:29 in 1155) [ClassicSimilarity], result of:
            0.020524062 = score(doc=1155,freq=2.0), product of:
              0.15088047 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.04289195 = queryNorm
              0.13602862 = fieldWeight in 1155, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
          0.028764304 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
            0.028764304 = score(doc=1155,freq=4.0), product of:
              0.15020029 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04289195 = queryNorm
              0.19150631 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
      0.25 = coord(1/4)
    
    Abstract
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    All the papers underwent a thorough and rigorous peer-review process. The review and selection this year was highly competitive and only papers containing significant research results, innovative methods, or novel and best practices were accepted for publication. Only 29 of 89 submissions were accepted as full papers, representing 32.5% of the total number of submissions. Additional contributions covering noteworthy and important results in special tracks or project reports were accepted, totaling 42 accepted contributions. This year's conference included two outstanding keynote speakers. Dr. Stefan Gradmann, a professor arts department of KU Leuven (Belgium) and director of university library, addressed semantic research drawing from his work with Europeana. The title of his presentation was, "Towards a Semantic Research Library: Digital Humanities Research, Europeana and the Linked Data Paradigm". Dr. Michail Salampasis, associate professor from our conference host institution, the Department of Informatics of the Alexander TEI of Thessaloniki, presented new potential, intersecting search and linked data. The title of his talk was, "Rethinking the Search Experience: What Could Professional Search Systems Do Better?"
    Date
    17.12.2013 12:51:22
  15. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.02
    0.016258039 = product of:
      0.065032154 = sum of:
        0.065032154 = product of:
          0.09754823 = sum of:
            0.05063609 = weight(_text_:systems in 3926) [ClassicSimilarity], result of:
              0.05063609 = score(doc=3926,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.38414678 = fieldWeight in 3926, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
            0.04691214 = weight(_text_:29 in 3926) [ClassicSimilarity], result of:
              0.04691214 = score(doc=3926,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.31092256 = fieldWeight in 3926, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Modern information retrieval systems advance user experience on the basis of concept-based rather than keyword-based query answering.
    Pages
    S.29-63
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  16. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.01
    0.014815299 = product of:
      0.059261195 = sum of:
        0.059261195 = product of:
          0.08889179 = sum of:
            0.053707685 = weight(_text_:systems in 439) [ClassicSimilarity], result of:
              0.053707685 = score(doc=439,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.4074492 = fieldWeight in 439, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
            0.035184108 = weight(_text_:29 in 439) [ClassicSimilarity], result of:
              0.035184108 = score(doc=439,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23319192 = fieldWeight in 439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    LCSH
    Information storage and retrieval systems
    Information systems
    Subject
    Information storage and retrieval systems
    Information systems
  17. Wenige, L.: ¬The application of linked data resources for library recommender systems (2017) 0.01
    0.014225784 = product of:
      0.056903135 = sum of:
        0.056903135 = product of:
          0.0853547 = sum of:
            0.04430658 = weight(_text_:systems in 3500) [ClassicSimilarity], result of:
              0.04430658 = score(doc=3500,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.33612844 = fieldWeight in 3500, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3500)
            0.041048124 = weight(_text_:29 in 3500) [ClassicSimilarity], result of:
              0.041048124 = score(doc=3500,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.27205724 = fieldWeight in 3500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3500)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  18. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.01
    0.013786211 = product of:
      0.055144843 = sum of:
        0.055144843 = product of:
          0.08271726 = sum of:
            0.03580512 = weight(_text_:systems in 4815) [ClassicSimilarity], result of:
              0.03580512 = score(doc=4815,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2716328 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
            0.04691214 = weight(_text_:29 in 4815) [ClassicSimilarity], result of:
              0.04691214 = score(doc=4815,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.31092256 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Date
    18. 1.2019 18:46:29
  19. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.01
    0.013621165 = product of:
      0.05448466 = sum of:
        0.05448466 = product of:
          0.08172699 = sum of:
            0.041048124 = weight(_text_:29 in 2640) [ClassicSimilarity], result of:
              0.041048124 = score(doc=2640,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.27205724 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
            0.040678866 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.040678866 = score(doc=2640,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Date
    20. 2.2009 10:29:39
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  20. Aberer, K. et al.: ¬The Semantic Web : 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007 : proceedings (2007) 0.01
    0.012348695 = product of:
      0.04939478 = sum of:
        0.04939478 = product of:
          0.074092165 = sum of:
            0.05063609 = weight(_text_:systems in 2477) [ClassicSimilarity], result of:
              0.05063609 = score(doc=2477,freq=16.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.38414678 = fieldWeight in 2477, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2477)
            0.02345607 = weight(_text_:29 in 2477) [ClassicSimilarity], result of:
              0.02345607 = score(doc=2477,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.15546128 = fieldWeight in 2477, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2477)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the joint 6th International Semantic Web Conference, ISWC 2007, and the 2nd Asian Semantic Web Conference, ASWC 2007, held in Busan, Korea, in November 2007. The 50 revised full academic papers and 12 revised application papers presented together with 5 Semantic Web Challenge papers and 12 selected doctoral consortium articles were carefully reviewed and selected from a total of 257 submitted papers to the academic track and 29 to the applications track. The papers address all current issues in the field of the semantic Web, ranging from theoretical and foundational aspects to various applied topics such as management of semantic Web data, ontologies, semantic Web architecture, social semantic Web, as well as applications of the semantic Web. Short descriptions of the top five winning applications submitted to the Semantic Web Challenge competition conclude the volume.
    LCSH
    Information systems
    Multimedia systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
    Subject
    Information systems
    Multimedia systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems

Years

Languages

  • e 119
  • d 17

Types

  • a 73
  • m 42
  • el 29
  • s 20
  • x 3
  • n 1
  • r 1
  • More… Less…

Subjects

Classifications