Search (42 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  • × type_ss:"m"
  1. Linked data and user interaction : the road ahead (2015) 0.08
    0.077203326 = product of:
      0.15440665 = sum of:
        0.14385746 = weight(_text_:interfaces in 2552) [ClassicSimilarity], result of:
          0.14385746 = score(doc=2552,freq=10.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.6436627 = fieldWeight in 2552, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2552)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 2552) [ClassicSimilarity], result of:
              0.031647556 = score(doc=2552,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 2552, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2552)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    This collection of research papers provides extensive information on deploying services, concepts, and approaches for using open linked data from libraries and other cultural heritage institutions. With a special emphasis on how libraries and other cultural heritage institutions can create effective end user interfaces using open, linked data or other datasets. These papers are essential reading for any one interesting in user interface design or the semantic web.
    Content
    H. Frank Cervone: Linked data and user interaction : an introduction -- Paola Di Maio: Linked Data Beyond Libraries Towards Universal Interfaces and Knowledge Unification -- Emmanuelle Bermes: Following the user's flow in the Digital Pompidou -- Patrick Le Bceuf: Customized OPACs on the Semantic Web : the OpenCat prototype -- Ryan Shaw, Patrick Golden and Michael Buckland: Using linked library data in working research notes -- Timm Heuss, Bernhard Humm.Tilman Deuschel, Torsten Frohlich, Thomas Herth and Oliver Mitesser: Semantically guided, situation-aware literature research -- Niklas Lindstrom and Martin Malmsten: Building interfaces on a networked graph -- Natasha Simons, Arve Solland and Jan Hettenhausen: Griffith Research Hub. Vgl.: http://d-nb.info/1032799889.
    LCSH
    User interfaces (Computer systems)
    Subject
    User interfaces (Computer systems)
  2. Zenz, G.; Zhou, X.; Minack, E.; Siberski, W.; Nejdl, W.: Interactive query construction for keyword search on the Semantic Web (2012) 0.04
    0.037442096 = product of:
      0.07488419 = sum of:
        0.064335 = weight(_text_:interfaces in 430) [ClassicSimilarity], result of:
          0.064335 = score(doc=430,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 430, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=430)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 430) [ClassicSimilarity], result of:
              0.031647556 = score(doc=430,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 430, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=430)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    With the advance of the semantic Web, increasing amounts of data are available in a structured and machine-understandable form. This opens opportunities for users to employ semantic queries instead of simple keyword-based ones to accurately express the information need. However, constructing semantic queries is a demanding task for human users [11]. To compose a valid semantic query, a user has to (1) master a query language (e.g., SPARQL) and (2) acquire sufficient knowledge about the ontology or the schema of the data source. While there are systems which support this task with visual tools [21, 26] or natural language interfaces [3, 13, 14, 18], the process of query construction can still be complex and time consuming. According to [24], users prefer keyword search, and struggle with the construction of semantic queries although being supported with a natural language interface. Several keyword search approaches have already been proposed to ease information seeking on semantic data [16, 32, 35] or databases [1, 31]. However, keyword queries lack the expressivity to precisely describe the user's intent. As a result, ranking can at best put query intentions of the majority on top, making it impossible to take the intentions of all users into consideration.
    Series
    Data-centric systems and applications
  3. Bergamaschi, S.; Domnori, E.; Guerra, F.; Rota, S.; Lado, R.T.; Velegrakis, Y.: Understanding the semantics of keyword queries on relational data without accessing the instance (2012) 0.04
    0.037442096 = product of:
      0.07488419 = sum of:
        0.064335 = weight(_text_:interfaces in 431) [ClassicSimilarity], result of:
          0.064335 = score(doc=431,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 431, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=431)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 431) [ClassicSimilarity], result of:
              0.031647556 = score(doc=431,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 431, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=431)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    The birth of the Web has brought an exponential growth to the amount of the information that is freely available to the Internet population, overloading users and entangling their efforts to satisfy their information needs. Web search engines such Google, Yahoo, or Bing have become popular mainly due to the fact that they offer an easy-to-use query interface (i.e., based on keywords) and an effective and efficient query execution mechanism. The majority of these search engines do not consider information stored on the deep or hidden Web [9,28], despite the fact that the size of the deep Web is estimated to be much bigger than the surface Web [9,47]. There have been a number of systems that record interactions with the deep Web sources or automatically submit queries them (mainly through their Web form interfaces) in order to index their context. Unfortunately, this technique is only partially indexing the data instance. Moreover, it is not possible to take advantage of the query capabilities of data sources, for example, of the relational query features, because their interface is often restricted from the Web form. Besides, Web search engines focus on retrieving documents and not on querying structured sources, so they are unable to access information based on concepts.
    Series
    Data-centric systems and applications
  4. Harth, A.; Hogan, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing linked data with SWSE* (2012) 0.04
    0.035897203 = product of:
      0.071794406 = sum of:
        0.064335 = weight(_text_:interfaces in 410) [ClassicSimilarity], result of:
          0.064335 = score(doc=410,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 410, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=410)
        0.007459401 = product of:
          0.022378203 = sum of:
            0.022378203 = weight(_text_:systems in 410) [ClassicSimilarity], result of:
              0.022378203 = score(doc=410,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=410)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Web search engines such as Google, Yahoo! MSN/Bing, and Ask are far from the consummate Web search solution: they do not typically produce direct answers to queries but instead typically recommend a selection of related documents from the Web. We note that in more recent years, search engines have begun to provide direct answers to prose queries matching certain common templates-for example, "population of china" or "12 euro in dollars"-but again, such functionality is limited to a small subset of popular user queries. Furthermore, search engines now provide individual and focused search interfaces over images, videos, locations, news articles, books, research papers, blogs, and real-time social media-although these tools are inarguably powerful, they are limited to their respective domains. In the general case, search engines are not suitable for complex information gathering tasks requiring aggregation from multiple indexed documents: for such tasks, users must manually aggregate tidbits of pertinent information from various pages. In effect, such limitations are predicated on the lack of machine-interpretable structure in HTML-documents, which is often limited to generic markup tags mainly concerned with document renderign and linking. Most of the real content is contained in prose text which is inherently difficult for machines to interpret.
    Series
    Data-centric systems and applications
  5. Brambilla, M.; Ceri, S.: Designing exploratory search applications upon Web data sources (2012) 0.03
    0.03170152 = product of:
      0.06340304 = sum of:
        0.051468004 = weight(_text_:interfaces in 428) [ClassicSimilarity], result of:
          0.051468004 = score(doc=428,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.23028374 = fieldWeight in 428, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.03125 = fieldNorm(doc=428)
        0.01193504 = product of:
          0.03580512 = sum of:
            0.03580512 = weight(_text_:systems in 428) [ClassicSimilarity], result of:
              0.03580512 = score(doc=428,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2716328 = fieldWeight in 428, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=428)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Search is the preferred method to access information in today's computing systems. The Web, accessed through search engines, is universally recognized as the source for answering users' information needs. However, offering a link to a Web page does not cover all information needs. Even simple problems, such as "Which theater offers an at least three-stars action movie in London close to a good Italian restaurant," can only be solved by searching the Web multiple times, e.g., by extracting a list of the recent action movies filtered by ranking, then looking for movie theaters, then looking for Italian restaurants close to them. While search engines hint to useful information, the user's brain is the fundamental platform for information integration. An important trend is the availability of new, specialized data sources-the so-called "long tail" of the Web of data. Such carefully collected and curated data sources can be much more valuable than information currently available in Web pages; however, many sources remain hidden or insulated, in the lack of software solutions for bringing them to surface and making them usable in the search context. A new class of tailor-made systems, designed to satisfy the needs of users with specific aims, will support the publishing and integration of data sources for vertical domains; the user will be able to select sources based on individual or collective trust, and systems will be able to route queries to such sources and to provide easyto-use interfaces for combining them within search strategies, at the same time, rewarding the data source owners for each contribution to effective search. Efforts such as Google's Fusion Tables show that the technology for bringing hidden data sources to surface is feasible.
    Series
    Data-centric systems and applications
  6. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.02
    0.017860413 = product of:
      0.07144165 = sum of:
        0.07144165 = sum of:
          0.02215329 = weight(_text_:systems in 1155) [ClassicSimilarity], result of:
            0.02215329 = score(doc=1155,freq=4.0), product of:
              0.13181444 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.04289195 = queryNorm
              0.16806422 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
          0.020524062 = weight(_text_:29 in 1155) [ClassicSimilarity], result of:
            0.020524062 = score(doc=1155,freq=2.0), product of:
              0.15088047 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.04289195 = queryNorm
              0.13602862 = fieldWeight in 1155, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
          0.028764304 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
            0.028764304 = score(doc=1155,freq=4.0), product of:
              0.15020029 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04289195 = queryNorm
              0.19150631 = fieldWeight in 1155, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1155)
      0.25 = coord(1/4)
    
    Abstract
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    All the papers underwent a thorough and rigorous peer-review process. The review and selection this year was highly competitive and only papers containing significant research results, innovative methods, or novel and best practices were accepted for publication. Only 29 of 89 submissions were accepted as full papers, representing 32.5% of the total number of submissions. Additional contributions covering noteworthy and important results in special tracks or project reports were accepted, totaling 42 accepted contributions. This year's conference included two outstanding keynote speakers. Dr. Stefan Gradmann, a professor arts department of KU Leuven (Belgium) and director of university library, addressed semantic research drawing from his work with Europeana. The title of his presentation was, "Towards a Semantic Research Library: Digital Humanities Research, Europeana and the Linked Data Paradigm". Dr. Michail Salampasis, associate professor from our conference host institution, the Department of Informatics of the Alexander TEI of Thessaloniki, presented new potential, intersecting search and linked data. The title of his talk was, "Rethinking the Search Experience: What Could Professional Search Systems Do Better?"
    Date
    17.12.2013 12:51:22
  7. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.01
    0.014815299 = product of:
      0.059261195 = sum of:
        0.059261195 = product of:
          0.08889179 = sum of:
            0.053707685 = weight(_text_:systems in 439) [ClassicSimilarity], result of:
              0.053707685 = score(doc=439,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.4074492 = fieldWeight in 439, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
            0.035184108 = weight(_text_:29 in 439) [ClassicSimilarity], result of:
              0.035184108 = score(doc=439,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23319192 = fieldWeight in 439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    LCSH
    Information storage and retrieval systems
    Information systems
    Subject
    Information storage and retrieval systems
    Information systems
  8. Aberer, K. et al.: ¬The Semantic Web : 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007 : proceedings (2007) 0.01
    0.012348695 = product of:
      0.04939478 = sum of:
        0.04939478 = product of:
          0.074092165 = sum of:
            0.05063609 = weight(_text_:systems in 2477) [ClassicSimilarity], result of:
              0.05063609 = score(doc=2477,freq=16.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.38414678 = fieldWeight in 2477, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2477)
            0.02345607 = weight(_text_:29 in 2477) [ClassicSimilarity], result of:
              0.02345607 = score(doc=2477,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.15546128 = fieldWeight in 2477, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2477)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the joint 6th International Semantic Web Conference, ISWC 2007, and the 2nd Asian Semantic Web Conference, ASWC 2007, held in Busan, Korea, in November 2007. The 50 revised full academic papers and 12 revised application papers presented together with 5 Semantic Web Challenge papers and 12 selected doctoral consortium articles were carefully reviewed and selected from a total of 257 submitted papers to the academic track and 29 to the applications track. The papers address all current issues in the field of the semantic Web, ranging from theoretical and foundational aspects to various applied topics such as management of semantic Web data, ontologies, semantic Web architecture, social semantic Web, as well as applications of the semantic Web. Short descriptions of the top five winning applications submitted to the Semantic Web Challenge competition conclude the volume.
    LCSH
    Information systems
    Multimedia systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
    Subject
    Information systems
    Multimedia systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
  9. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.01
    0.012346083 = product of:
      0.049384333 = sum of:
        0.049384333 = product of:
          0.074076496 = sum of:
            0.044756405 = weight(_text_:systems in 2192) [ClassicSimilarity], result of:
              0.044756405 = score(doc=2192,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.339541 = fieldWeight in 2192, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
            0.029320091 = weight(_text_:29 in 2192) [ClassicSimilarity], result of:
              0.029320091 = score(doc=2192,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19432661 = fieldWeight in 2192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 8th Metadata and Semantics Research Conference, MTSR 2014, held in Karlsruhe, Germany, in November 2014. The 23 full papers and 9 short papers presented were carefully reviewed and selected from 57 submissions. The papers are organized in several sessions and tracks. They cover the following topics: metadata and linked data: tools and models; (meta) data quality assessment and curation; semantic interoperability, ontology-based data access and representation; big data and digital libraries in health, science and technology; metadata and semantics for open repositories, research information systems and data infrastructure; metadata and semantics for cultural collections and applications; semantics for agriculture, food and environment.
    Content
    Metadata and linked data.- Tools and models.- (Meta)data quality assessment and curation.- Semantic interoperability, ontology-based data access and representation.- Big data and digital libraries in health, science and technology.- Metadata and semantics for open repositories, research information systems and data infrastructure.- Metadata and semantics for cultural collections and applications.- Semantics for agriculture, food and environment.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  10. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.0120013915 = product of:
      0.048005566 = sum of:
        0.048005566 = product of:
          0.07200835 = sum of:
            0.031329483 = weight(_text_:systems in 3283) [ClassicSimilarity], result of:
              0.031329483 = score(doc=3283,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23767869 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
            0.040678866 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.040678866 = score(doc=3283,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
  11. Semantic Web services challenge : results from the first year (2009) 0.01
    0.010339659 = product of:
      0.041358635 = sum of:
        0.041358635 = product of:
          0.062037952 = sum of:
            0.026853843 = weight(_text_:systems in 2479) [ClassicSimilarity], result of:
              0.026853843 = score(doc=2479,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2037246 = fieldWeight in 2479, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2479)
            0.035184108 = weight(_text_:29 in 2479) [ClassicSimilarity], result of:
              0.035184108 = score(doc=2479,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23319192 = fieldWeight in 2479, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2479)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Service-Oriented Computing is one of the most promising software engineering trends for future distributed systems. Currently there are many different approaches to semantic web service descriptions and many frameworks built around them. Yet a common understanding, evaluation scheme, and test bed to compare and classify these frameworks in terms of their abilities and shortcomings, is still missing. "Semantic Web Services Challenge" is an edited volume that develops this common understanding of the various technologies intended to facilitate the automation of mediation, choreography and discovery for Web Services using semantic annotations. "Semantic Web Services Challenge" is designed for a professional audience composed of practitioners and researchers in industry. Professionals can use this book to evaluate SWS technology for their potential practical use. The book is also suitable for advanced-level students in computer science.
    Date
    13.12.2008 11:34:29
  12. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.01
    0.009127851 = product of:
      0.036511403 = sum of:
        0.036511403 = product of:
          0.054767102 = sum of:
            0.029603578 = weight(_text_:systems in 150) [ClassicSimilarity], result of:
              0.029603578 = score(doc=150,freq=14.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.22458525 = fieldWeight in 150, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
            0.025163526 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.025163526 = score(doc=150,freq=6.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Multimedia systems
    Information storage and retrieval systems
    Subject
    Multimedia systems
    Information storage and retrieval systems
  13. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.01
    0.008616382 = product of:
      0.03446553 = sum of:
        0.03446553 = product of:
          0.051698294 = sum of:
            0.022378203 = weight(_text_:systems in 4706) [ClassicSimilarity], result of:
              0.022378203 = score(doc=4706,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 4706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
            0.029320091 = weight(_text_:29 in 4706) [ClassicSimilarity], result of:
              0.029320091 = score(doc=4706,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19432661 = fieldWeight in 4706, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4706)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    Date
    29. 7.2011 14:44:56
  14. Corporate Semantic Web : wie semantische Anwendungen in Unternehmen Nutzen stiften (2015) 0.01
    0.008129019 = product of:
      0.032516077 = sum of:
        0.032516077 = product of:
          0.048774116 = sum of:
            0.025318045 = weight(_text_:systems in 2246) [ClassicSimilarity], result of:
              0.025318045 = score(doc=2246,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19207339 = fieldWeight in 2246, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2246)
            0.02345607 = weight(_text_:29 in 2246) [ClassicSimilarity], result of:
              0.02345607 = score(doc=2246,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.15546128 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2246)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Date
    29. 9.2015 19:11:44
    LCSH
    Information systems
    Subject
    Information systems
  15. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.01
    0.007112892 = product of:
      0.028451568 = sum of:
        0.028451568 = product of:
          0.04267735 = sum of:
            0.02215329 = weight(_text_:systems in 1981) [ClassicSimilarity], result of:
              0.02215329 = score(doc=1981,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.16806422 = fieldWeight in 1981, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
            0.020524062 = weight(_text_:29 in 1981) [ClassicSimilarity], result of:
              0.020524062 = score(doc=1981,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.13602862 = fieldWeight in 1981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
    Date
    29. 3.1996 18:16:49
  16. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.01
    0.0068931053 = product of:
      0.027572421 = sum of:
        0.027572421 = product of:
          0.04135863 = sum of:
            0.01790256 = weight(_text_:systems in 4707) [ClassicSimilarity], result of:
              0.01790256 = score(doc=4707,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1358164 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
            0.02345607 = weight(_text_:29 in 4707) [ClassicSimilarity], result of:
              0.02345607 = score(doc=4707,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.15546128 = fieldWeight in 4707, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4707)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    Date
    29. 7.2011 14:44:56
  17. Bizer, C.; Mendes, P.N.; Jentzsch, A.: Topology of the Web of Data (2012) 0.01
    0.0068931053 = product of:
      0.027572421 = sum of:
        0.027572421 = product of:
          0.04135863 = sum of:
            0.01790256 = weight(_text_:systems in 425) [ClassicSimilarity], result of:
              0.01790256 = score(doc=425,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1358164 = fieldWeight in 425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=425)
            0.02345607 = weight(_text_:29 in 425) [ClassicSimilarity], result of:
              0.02345607 = score(doc=425,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.15546128 = fieldWeight in 425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=425)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Pages
    S.3-29
    Series
    Data-centric systems and applications
  18. Semantic applications (2018) 0.00
    0.00493393 = product of:
      0.01973572 = sum of:
        0.01973572 = product of:
          0.059207156 = sum of:
            0.059207156 = weight(_text_:systems in 5204) [ClassicSimilarity], result of:
              0.059207156 = score(doc=5204,freq=14.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.4491705 = fieldWeight in 5204, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    LCSH
    Management information systems
    Information Systems Applications (incl. Internet)
    Management of Computing and Information Systems
    Subject
    Management information systems
    Information Systems Applications (incl. Internet)
    Management of Computing and Information Systems
  19. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.00
    0.0038760183 = product of:
      0.015504073 = sum of:
        0.015504073 = product of:
          0.04651222 = sum of:
            0.04651222 = weight(_text_:systems in 3274) [ClassicSimilarity], result of:
              0.04651222 = score(doc=3274,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.35286134 = fieldWeight in 3274, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3274)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Content
    The papers are organized in several sessions and tracks: general track on ontology evolution, engineering, and frameworks, semantic Web and metadata extraction, modelling, interoperability and exploratory search, data analysis, reuse and visualization; track on digital libraries, information retrieval, linked and social data; track on metadata and semantics for open repositories, research information systems and data infrastructure; track on metadata and semantics for agriculture, food and environment; track on metadata and semantics for cultural collections and applications; track on European and national projects.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  20. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.0037297006 = product of:
      0.014918802 = sum of:
        0.014918802 = product of:
          0.044756405 = sum of:
            0.044756405 = weight(_text_:systems in 2801) [ClassicSimilarity], result of:
              0.044756405 = score(doc=2801,freq=8.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.339541 = fieldWeight in 2801, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    LCSH
    Multimedia systems
    Information storage and retrieval systems
    Subject
    Multimedia systems
    Information storage and retrieval systems

Years

Languages

  • e 39
  • d 3

Subjects

Classifications