Search (3 results, page 1 of 1)

  • × author_ss:"Aguillo, I.F."
  • × theme_ss:"Informetrie"
  1. Ortega, J.L.; Aguillo, I.F.: Microsoft academic search and Google scholar citations : comparative analysis of author profiles (2014) 0.08
    0.08235665 = product of:
      0.12353496 = sum of:
        0.08051914 = weight(_text_:search in 1284) [ClassicSimilarity], result of:
          0.08051914 = score(doc=1284,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 1284, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1284)
        0.043015826 = product of:
          0.08603165 = sum of:
            0.08603165 = weight(_text_:engines in 1284) [ClassicSimilarity], result of:
              0.08603165 = score(doc=1284,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.33681408 = fieldWeight in 1284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1284)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article offers a comparative analysis of the personal profiling capabilities of the two most important free citation-based academic search engines, namely, Microsoft Academic Search (MAS) and Google Scholar Citations (GSC). Author profiles can be useful for evaluation purposes once the advantages and the shortcomings of these services are described and taken into consideration. In total, 771 personal profiles appearing in both the MAS and the GSC databases were analyzed. Results show that the GSC profiles include more documents and citations than those in MAS but with a strong bias toward the information and computing sciences, whereas the MAS profiles are disciplinarily better balanced. MAS shows technical problems such as a higher number of duplicated profiles and a lower updating rate than GSC. It is concluded that both services could be used for evaluation proposes only if they are applied along with other citation indices as a way to supplement that information.
    Object
    Microsoft academic search
  2. Aguillo, I.F.; Granadino, B.; Ortega, J.L.; Prieto, J.A.: Scientific research activity and communication measured with cybermetrics indicators (2006) 0.06
    0.05551693 = product of:
      0.08327539 = sum of:
        0.04025957 = weight(_text_:search in 5898) [ClassicSimilarity], result of:
          0.04025957 = score(doc=5898,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 5898, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=5898)
        0.043015826 = product of:
          0.08603165 = sum of:
            0.08603165 = weight(_text_:engines in 5898) [ClassicSimilarity], result of:
              0.08603165 = score(doc=5898,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.33681408 = fieldWeight in 5898, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5898)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    To test feasibility of cybermetric indicators for describing and ranking university activities as shown in their Web sites, a large set of 9,330 institutions worldwide was compiled and analyzed. Using search engines' advanced features, size (number of pages), visibility (number of external inlinks), and number of rich files (pdf, ps, doc, ppt, and As formats) were obtained for each of the institutional domains of the universities. We found a statistically significant correlation between a Web ranking built on a combination of Webometric data and other university rankings based on bibliometric and other indicators. Results show that cybermetric measures could be useful for reflecting the contribution of technologically oriented institutions, increasing the visibility of developing countries, and improving the rankings based on Science Citation Index (SCI) data with known biases.
  3. Delgado-Quirós, L.; Aguillo, I.F.; Martín-Martín, A.; López-Cózar, E.D.; Orduña-Malea, E.; Ortega, J.L.: Why are these publications missing? : uncovering the reasons behind the exclusion of documents in free-access scholarly databases (2024) 0.05
    0.04626411 = product of:
      0.06939616 = sum of:
        0.03354964 = weight(_text_:search in 1201) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1201,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1201, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1201)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 1201) [ClassicSimilarity], result of:
              0.07169304 = score(doc=1201,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 1201, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study analyses the coverage of seven free-access bibliographic databases (Crossref, Dimensions-non-subscription version, Google Scholar, Lens, Microsoft Academic, Scilit, and Semantic Scholar) to identify the potential reasons that might cause the exclusion of scholarly documents and how they could influence coverage. To do this, 116 k randomly selected bibliographic records from Crossref were used as a baseline. API endpoints and web scraping were used to query each database. The results show that coverage differences are mainly caused by the way each service builds their databases. While classic bibliographic databases ingest almost the exact same content from Crossref (Lens and Scilit miss 0.1% and 0.2% of the records, respectively), academic search engines present lower coverage (Google Scholar does not find: 9.8%, Semantic Scholar: 10%, and Microsoft Academic: 12%). Coverage differences are mainly attributed to external factors, such as web accessibility and robot exclusion policies (39.2%-46%), and internal requirements that exclude secondary content (6.5%-11.6%). In the case of Dimensions, the only classic bibliographic database with the lowest coverage (7.6%), internal selection criteria such as the indexation of full books instead of book chapters (65%) and the exclusion of secondary content (15%) are the main motives of missing publications.