Search (24 results, page 2 of 2)

  • × author_ss:"Jansen, B.J."
  1. Reddy, M.C.; Jansen, B.J.: ¬A model for understanding collaborative information behavior in context : a study of two healthcare teams (2008) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 2033) [ClassicSimilarity], result of:
          0.04025957 = score(doc=2033,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 2033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2033)
      0.33333334 = coord(1/3)
    
    Abstract
    Collaborative information behavior is an essential aspect of organizational work; however, we have very limited understanding of this behavior. Most models of information behavior focus on the individual seeker of information. In this paper, we report the results from two empirical studies that investigate aspects of collaborative information behavior in organizational settings. From these studies, we found that collaborative information behavior differs from individual information behavior with respect to how individuals interact with each other, the complexity of the information need, and the role of information technology. There are specific triggers for transitioning from individual to collaborative information behavior, including lack of domain expertise. The information retrieval technologies used affect collaborative information behavior by acting as important supporting mechanisms. From these results and prior work, we develop a model of collaborative information behavior along the axes of participant behavior, situational elements, and contextual triggers. We also present characteristics of collaborative information system including search, chat, and sharing. We discuss implications for the design of collaborative information retrieval systems and directions for future work.
  2. Jansen, B.J.; Booth, D.L.; Spink, A.: Patterns of query reformulation during Web searching (2009) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 2936) [ClassicSimilarity], result of:
          0.04025957 = score(doc=2936,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 2936, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
      0.33333334 = coord(1/3)
    
    Abstract
    Query reformulation is a key user behavior during Web search. Our research goal is to develop predictive models of query reformulation during Web searching. This article reports results from a study in which we automatically classified the query-reformulation patterns for 964,780 Web searching sessions, composed of 1,523,072 queries, to predict the next query reformulation. We employed an n-gram modeling approach to describe the probability of users transitioning from one query-reformulation state to another to predict their next state. We developed first-, second-, third-, and fourth-order models and evaluated each model for accuracy of prediction, coverage of the dataset, and complexity of the possible pattern set. The results show that Reformulation and Assistance account for approximately 45% of all query reformulations; furthermore, the results demonstrate that the first- and second-order models provide the best predictability, between 28 and 40% overall and higher than 70% for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance.
  3. Jansen, B.J.; McNeese, M.D.: Evaluating the Effectiveness of and Patterns of Interactions With Automated Searching Assistance (2005) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 4815) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4815,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4815, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4815)
      0.33333334 = coord(1/3)
    
    Abstract
    We report quantitative and qualitative results of an empirical evaluation to determine whether automated assistance improves searching performance and when searchers desire system intervention in the search process. Forty participants interacted with two fully functional information retrieval systems in a counterbalanced, within-participant study. The systems were identical in all respects except that one offered automated assistance and the other did not. The study used a client-side automated assistance application, an approximately 500,000-document Text REtrieval Conference content collection, and six topics. Results indicate that automated assistance can improve searching performance. However, the improvement is less dramatic than one might expect, with an approximately 20% performance increase, as measured by the number of userselected relevant documents. Concerning patterns of interaction, we identified 1,879 occurrences of searchersystem interactions and classified them into 9 major categories and 27 subcategories or states. Results indicate that there are predictable patterns of times when searchers desire and implement searching assistance. The most common three-state pattern is Execute Query-View Results: With Scrolling-View Assistance. Searchers appear receptive to automated assistance; there is a 71% implementation rate. There does not seem to be a correlation between the use of assistance and previous searching performance. We discuss the implications for the design of information retrieval systems and future research directions.
  4. Jansen, B.J.; Booth, D.L.; Smith, B.K.: Using the taxonomy of cognitive learning to model online searching (2009) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 4223) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4223,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4223, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4223)
      0.33333334 = coord(1/3)
    
    Abstract
    In this research, we investigated whether a learning process has unique information searching characteristics. The results of this research show that information searching is a learning process with unique searching characteristics specific to particular learning levels. In a laboratory experiment, we studied the searching characteristics of 72 participants engaged in 426 searching tasks. We classified the searching tasks according to Anderson and Krathwohl's taxonomy of the cognitive learning domain. Research results indicate that applying and analyzing, the middle two of the six categories, generally take the most searching effort in terms of queries per session, topics searched per session, and total time searching. Interestingly, the lowest two learning categories, remembering and understanding, exhibit searching characteristics similar to the highest order learning categories of evaluating and creating. Our results suggest the view of Web searchers having simple information needs may be incorrect. Instead, we discovered that users applied simple searching expressions to support their higher-level information needs. It appears that searchers rely primarily on their internal knowledge for evaluating and creating information needs, using search primarily for fact checking and verification. Overall, results indicate that a learning theory may better describe the information searching process than more commonly used paradigms of decision making or problem solving. The learning style of the searcher does have some moderating effect on exhibited searching characteristics. The implication of this research is that rather than solely addressing a searcher's expressed information need, searching systems can also address the underlying learning need of the user.