Search (4 results, page 1 of 1)

  • × author_ss:"Large, A."
  • × author_ss:"Cole, C."
  1. Yi, K.; Beheshti, J.; Cole, C.; Leide, J.E.; Large, A.: User search behavior of domain-specific information retrieval systems : an analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life (2006) 0.07
    0.06863054 = product of:
      0.102945805 = sum of:
        0.06709928 = weight(_text_:search in 197) [ClassicSimilarity], result of:
          0.06709928 = score(doc=197,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3840117 = fieldWeight in 197, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=197)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 197) [ClassicSimilarity], result of:
              0.07169304 = score(doc=197,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=197)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The authors report the findings of a study that analyzes and compares the query logs of PsycINFO for psychology and the two history databases of ABC-Clio: Historical Abstracts and America: History and Life to establish the sociological nature of information need, searching, and seeking in history versus psychology. Two problems are addressed: (a) What level of query log analysis - by individual query terms, by co-occurrence of word pairs, or by multiword terms (MWTs) - best serves as data for categorizing the queries to these two subject-bound databases; and (b) how can the differences in the nature of the queries to history versus psychology databases aid in our understanding of user search behavior and the information needs of their respective users. The authors conclude that MWTs provide the most effective snapshot of user searching behavior for query categorization. The MWTs to ABC-Clio indicate specific instances of historical events, people, and regions, whereas the MWTs to PsycINFO indicate concepts roughly equivalent to descriptors used by PsycINFO's own classification scheme. The average length of queries is 3.16 terms for PsycINFO and 3.42 for ABC-Clio, which breaks from findings for other reference and scholarly search engine studies, bringing query length closer in line to findings for general Web search engines like Excite.
  2. Cole, C.; Lin, Y.; Leide, J.; Large, A.; Beheshti, J.: ¬A classification of mental models of undergraduates seeking information for a course essay in history and psychology : preliminary investigations into aligning their mental models with online thesauri (2007) 0.04
    0.037011288 = product of:
      0.05551693 = sum of:
        0.026839713 = weight(_text_:search in 625) [ClassicSimilarity], result of:
          0.026839713 = score(doc=625,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.15360467 = fieldWeight in 625, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=625)
        0.028677218 = product of:
          0.057354435 = sum of:
            0.057354435 = weight(_text_:engines in 625) [ClassicSimilarity], result of:
              0.057354435 = score(doc=625,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.22454272 = fieldWeight in 625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=625)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The article reports a field study which examined the mental models of 80 undergraduates seeking information for either a history or psychology course essay when they were in an early, exploration stage of researching their essay. This group is presently at a disadvantage when using thesaurus-type schemes in indexes and online search engines because there is a disconnect between how domain novice users of IR systems represent a topic space and how this space is represented in the standard IR system thesaurus. The study attempted to (a) ascertain the coding language used by the 80 undergraduates in the study to mentally represent their topic and then (b) align the mental models with the hierarchical structure found in many thesauri. The intervention focused the undergraduates' thinking about their topic from a topic statement to a thesis statement. The undergraduates were asked to produce three mental model diagrams for their real-life course essay at the beginning, middle, and end of the interview, for a total of 240 mental model diagrams, from which we created a 12-category mental model classification scheme. Findings indicate that at the end of the intervention, (a) the percentage of vertical mental models increased from 24 to 35% of all mental models; but that (b) 3rd-year students had fewer vertical mental models than did 1st-year undergraduates in the study, which is counterintuitive. The results indicate that there is justification for pursuing our research based on the hypothesis that rotating a domain novice's mental model into a vertical position would make it easier for him or her to cognitively connect with the thesaurus's hierarchical representation of the topic area.
  3. Leide, J.E.; Large, A.; Beheshti, J.; Brooks, M.; Cole, C.: Visualization schemes for domain novices exploring a topic space : the navigation classification scheme (2003) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 1078) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1078,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1078, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1078)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article and two other articles which conceptualize a future stage of the research program (Leide, Cole, Large, & Beheshti, submitted for publication; Cole, Leide, Large, Beheshti, & Brooks, in preparation), we map-out a domain novice user's encounter with an IR system from beginning to end so that appropriate classification-based visualization schemes can be inserted into the encounter process. This article describes the visualization of a navigation classification scheme only. The navigation classification scheme uses the metaphor of a ship and ship's navigator traveling through charted (but unknown to the user) waters, guided by a series of lighthouses. The lighthouses contain mediation interfaces linking the user to the information store through agents created for each. The user's agent is the cognitive model the user has of the information space, which the system encourages to evolve via interaction with the system's agent. The system's agent is an evolving classification scheme created by professional indexers to represent the structure of the information store. We propose a more systematic, multidimensional approach to creating evolving classification/indexing schemes, based on where the user is and what she is trying to do at that moment during the search session.
  4. Cole, C.; Behesthi, J.; Large, A.; Lamoureux, I.; Abuhimed, D.; AlGhamdi, M.: Seeking information for a middle school history project : the concept of implicit knowledge in the students' transition from Kuhlthau's Stage 3 to Stage 4 (2013) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 667) [ClassicSimilarity], result of:
              0.03405643 = score(doc=667,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=667)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2013 19:41:17