Search (2 results, page 1 of 1)

  • × author_ss:"Lee, D.L."
  • × theme_ss:"Retrievalalgorithmen"
  1. Couvreur, T.R.; Benzel, R.N.; Miller, S.F.; Zeitler, D.N.; Lee, D.L.; Singhal, M.; Shivaratri, N.; Wong, W.Y.P.: ¬An analysis of performance and cost factors in searching large text databases using parallel search systems (1994) 0.04
    0.035008997 = product of:
      0.10502698 = sum of:
        0.10502698 = weight(_text_:search in 7657) [ClassicSimilarity], result of:
          0.10502698 = score(doc=7657,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.6010733 = fieldWeight in 7657, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7657)
      0.33333334 = coord(1/3)
    
    Abstract
    The results of modelling the performance of searching large text databases (>10 GBytes) via various parallel hardware architectures and search algorithms are discussed. The performance under load and the cost of each configuration are compared. Strengths, weaknesses, performance sensitivities, and search features supported for each configuration are also addressed. In addition, a common search workload used in the modelling is described. The search workload is derived from a set of searches run against the Chemical Abstracts file of bibliographic and abstract text available on STN International. This common workload is applied to all configurations modelled to provide a common basis of comparison
  2. Lee, D.L.; Ren, L.: Document ranking on weight-partitioned signature files (1996) 0.02
    0.015656501 = product of:
      0.0469695 = sum of:
        0.0469695 = weight(_text_:search in 2417) [ClassicSimilarity], result of:
          0.0469695 = score(doc=2417,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2688082 = fieldWeight in 2417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2417)
      0.33333334 = coord(1/3)
    
    Abstract
    Proposes the weight partitioned signature file, a signature file organization for supporting document ranking. It uses multiple signature files each corresponding to one term frequency to represent terms with different term frequencies. Words with the same term frequency in a document are grouped together and hased into the signature file corresponding to that term frequency. Investigates the effect of false drops on retrieval effectiveness. Analyses the performance of the weight partitioned signature file under different search strategies and configurations. Obtains an optimal formula for storage allocation to minimise the effect of false drops on document ranks. Analytical results are supported by experiments on document collections