Search (14 results, page 1 of 1)

  • × author_ss:"Soergel, D."
  1. Komlodi, A.; Soergel, D.; Marchionini, G.: Search histories for user support in user interfaces (2006) 0.08
    0.08463379 = product of:
      0.12695068 = sum of:
        0.10651682 = weight(_text_:search in 5298) [ClassicSimilarity], result of:
          0.10651682 = score(doc=5298,freq=14.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.6095997 = fieldWeight in 5298, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=5298)
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 5298) [ClassicSimilarity], result of:
              0.040867712 = score(doc=5298,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 5298, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5298)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The authors describe user interface tools based on search histories to support legal information seekers. The design of the tools was informed by the results of a user study (Komlodi, 2002a) that examined the use of human memory, external memory aids, and search histories in legal information seeking and derived interface design recommendations for information storage and retrieval systems. The data collected were analyzed to identify potential task areas where search histories can support information seeking and use. The results show that many information-seeking tasks can take advantage of automatically and manually recorded history information. These findings encouraged the design of user interface tools building on search history information: direct search history displays, history-enabled scratchpad facilities, and organized results collection tools.
    Date
    22. 7.2006 18:04:19
    Footnote
    Beitrag in einer Special Section "Perspectives on Search User Interfaces: Best Practices and Future Visions"
  2. Ahn, J.-w.; Soergel, D.; Lin, X.; Zhang, M.: Mapping between ARTstor terms and the Getty Art and Architecture Thesaurus (2014) 0.04
    0.040462285 = product of:
      0.060693428 = sum of:
        0.04025957 = weight(_text_:search in 1421) [ClassicSimilarity], result of:
          0.04025957 = score(doc=1421,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 1421, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1421)
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 1421) [ClassicSimilarity], result of:
              0.040867712 = score(doc=1421,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 1421, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1421)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    To make better use of knowledge organization systems (KOS) for query expansion, we have developed a pattern-based technique for composition ontology mapping in a specific domain. The technique was tested in a two-step mapping. The user's free-text queries were first mapped to Getty's Art & Architecture Thesaurus (AAT) terms. The AAT-based queries were then mapped to a search engine's indexing vocabulary (ARTstor terms). The result indicated that our technique has improved the mapping success rate from 40% to 70%. We discuss also how the technique may be applied to other KOS mapping and how it may be implemented in practical systems.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Komlodi, A.; Marchionini, G.; Soergel, D.: Search history support for finding and using information : user interface design recommendations from a user study (2007) 0.04
    0.035505608 = product of:
      0.10651682 = sum of:
        0.10651682 = weight(_text_:search in 892) [ClassicSimilarity], result of:
          0.10651682 = score(doc=892,freq=14.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.6095997 = fieldWeight in 892, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=892)
      0.33333334 = coord(1/3)
    
    Abstract
    Recording search histories, presenting them to the searcher, and building additional interface tools on them offer many opportunities for supporting user tasks in information seeking and use. This study investigated the use of search history information in legal information seeking. Qualitative methods were used to explore how attorneys and law librarians used their memory and external memory aids while searching for information and in transferring to information use. Based on the findings, interface design recommendations were made for information systems. Results of the study from the legal user group presented evidence of the usefulness of search histories and history-based interface tools. Both user manifestations and researcher observations revealed that searchers need historical information in information seeking. Search histories were found to be useful in many user tasks: memory support, search system use, information seeking, information use, task management, task integration, and collaboration. Integrating information across various user tasks and collaborating with others are extensions of traditional information-seeking and use models. These findings encouraged the design of user interface tools and guidelines building on search history information.
  4. Soergel, D.: Conceptual foundations for semantic mapping and semantic search (2011) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 3939) [ClassicSimilarity], result of:
          0.056935627 = score(doc=3939,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 3939, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3939)
      0.33333334 = coord(1/3)
    
    Abstract
    This article proposes an approach to mapping between Knowledge Organization Systems (KOS), including ontologies, classifications, taxonomies, and thesauri and even natural languages, that is based on deep semantics. In this approach, concepts in each KOS are expressed through canonical expressions, such as description logic formulas, that combine atomic (or elemental) concepts drawn from a core classification. Relationships between concepts within or across KOS can then be derived by reasoning over the canonical expressions. The canonical expressions can also be used to provide a facet-based query formulation front-end for free-text search. The article illustrates this approach through many examples. It presents methods for the efficient construction of canonical expressions (linguistic analysis, exploiting information in the KOS and their hierarchies, and crowdsourcing) that make this approach feasible.
  5. Wang, P.; Soergel, D.: Beyond topical relevance : document selection behaviour of real users of IR systems (1993) 0.02
    0.017893143 = product of:
      0.053679425 = sum of:
        0.053679425 = weight(_text_:search in 7960) [ClassicSimilarity], result of:
          0.053679425 = score(doc=7960,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.30720934 = fieldWeight in 7960, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=7960)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports on part of a study of real users' behaviour in selecting documents from a list of citations resulting from a search of an information retrieval system. Document selection involves value judgements and decision making. Understanding how users evaluate documents and make decisions provides a basis for designing intelligent information retrieval system that can do a better job of predicting usefulness
  6. Soergel, D.: Mathematical analysis of documentation systems : an attempt to a theory of classification and search request formulation (1967) 0.02
    0.015815454 = product of:
      0.04744636 = sum of:
        0.04744636 = weight(_text_:search in 5449) [ClassicSimilarity], result of:
          0.04744636 = score(doc=5449,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 5449, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5449)
      0.33333334 = coord(1/3)
    
    Abstract
    As an attempt to make a general structural theory of information retrieval, a documentation system (DS) is defined as a formal system consisting of (a) a set o of objects (documents); (b) a set A++ of elementary attributes (key-words), from which further attributes may be constructed: A++ generates A; (c) a set of axioms of the form X++(x)=m (m¯M, M a set of constant connecting attributes with objects: from the axioms further theorems (=true statements) may be constructed. By use of the theorems, different mappings O -> P(o) (P(o) set of all subsets of o) (search question -> set of documents retrieved) are defined. The type of a DS depends on two basic decisions: (1) choice of the rules for the construction of attributes and theorems, e.g., logical product in coordinate indexing; links. (2) choice of M; M may consist of the two constants 'applicable' and 'not applicable', or some positive integers, ...; Further practical decisions: A++ hierarchical or not; kind of mapping; introduction of roles (=further attributes). The most simple case - ordinary two-valued Coordinate Indexing - is discusssed in detail; o is a free distributive (but not Boolean) lattice, the homographic image a ring of subsets of o; instead of negation which is not useful, a useful retrieval operation 'praeternagation' is introduced. Furthermore these are discussed: a generalized definition of superimposed coding, some functions for the distance of objects or attributes; optimization and automatic derivation of classifications. The model takes into account term-term relations and document-document relations. It may serve as a structural framework in terms of which the functional problems of retrieval theory may be expressed more clearly
  7. Soergel, D.: Knowledge organization for learning (2014) 0.01
    0.011238049 = product of:
      0.033714145 = sum of:
        0.033714145 = product of:
          0.06742829 = sum of:
            0.06742829 = weight(_text_:22 in 1400) [ClassicSimilarity], result of:
              0.06742829 = score(doc=1400,freq=4.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.38301262 = fieldWeight in 1400, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1400)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.22-32
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  8. Wang, P.; Soergel, D.: ¬A cognitive model of document use during a research project : Study I: Document selection (1998) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 443) [ClassicSimilarity], result of:
          0.03354964 = score(doc=443,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 443, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=443)
      0.33333334 = coord(1/3)
    
    Abstract
    This article proposes a model of document selection by real users of a bibliographic retrieval system. It reports on Part 1 of a longitudinal study of decision making on document use by academics during a actual research project. (Part 2 followed up the same users on how the selected documents were actually used in subsequent stages). The participants are 25 self-selected faculty and graduate students in Agricultural Economics. After a reference interview, the researcher conducted a search of DIALOG databases and prepared a printout. The users selected documents from this printout, They were asked to read and think aloud while selecting documents. There verbal reports were recorded and analyzed from a utiliy-theoretic perspective. The following model of the decision-making in the selection process emerged: document information lemenets (DIEs) in document records provide the information for judging the documents on 11 criteria (including topicality, orientation, quality, novelty, and authority); the criteria judgments are comninded in an assessment of document value along 5 dimensions (Epistemic, functional, conditional, social, and emotional values), leading to the use decision. This model accounts for the use of personal knowledge and decision strategies applied in the selection process. The model has implications for the design of an intelligent document selection assistant
  9. Soergel, D.: SemWeb: proposal for an open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology (1996) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 3575) [ClassicSimilarity], result of:
          0.03354964 = score(doc=3575,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 3575, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3575)
      0.33333334 = coord(1/3)
    
    Abstract
    Presents a proposal for the long-range development of an open, multifunctional, multilingual system for integrated access to many kinds of knowledge about concepts and terminology. The system would draw on existing knowledge bases that are accessible through the Internet or on CD-ROM and on a common integrated distributed knowledge base that would grow incrementally over time. Existing knowledge bases would be accessed througha common interface that would search several knowledge bases, collate the data into a common format, and present them to the user. The common integrated distributed knowldge base would provide an environment in which many contributors could carry out classification and terminological projects more efficiently, with the results available in a common format. Over time, data from other knowledge bases could be incorporated into the common knowledge base, either by actual transfer (provided the knowledge base producers are willing) or by reference through a link. Either way, such incorporation requires intellectual work but allows for tighter integration than common interface access to multiple knowledge bases. Each piece of information in the common knowledge base will have all its sources attached, providing an acknowledgment mechanism that gives due credit to all contributors. The whole system would be designed to be usable by many levels of users for improved information exchange.
  10. Soergel, D.: SemWeb: Proposal for an Open, multifunctional, multilingual system for integrated access to knowledge about concepts and terminology : exploration and development of the concept (1996) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 3576) [ClassicSimilarity], result of:
          0.03354964 = score(doc=3576,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 3576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3576)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper presents a proposal for the long-range development of an open, multifunctional, multilingual system for integrated access to many kinds of knowledge about concepts and terminology. The system would draw on existing knowledge bases that are accessible through the Internet or on CD-ROM an on a common integrated distributed knowledge base that would grow incrementally over time. Existing knowledge bases would be accessed through a common interface that would search several knowledge bases, collate the data into a common format, and present them to the user. The common integrated distributed knowledge base would provide an environment in which many contributors could carry out classification and terminological projects more efficiently, with the results available in a common format. Over time, data from other knowledge bases could be incorporated into the common knowledge base, either by actual transfer (provided the knowledge base producers are willing) or by reference through a link. Either way, such incorporation requires intellectual work but allows for tighter integration than common interface access to multiple knowledge bases. Each piece of information in the common knowledge base will have all its sources attached, providing an acknowledgment mechanism that gives due credit to all contributors. The whole system woul be designed to be usable by many levels of users for improved information exchange.
  11. Zhang, P.; Soergel, D.: Cognitive mechanisms in sensemaking : a qualitative user study (2020) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 5614) [ClassicSimilarity], result of:
          0.03354964 = score(doc=5614,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 5614, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5614)
      0.33333334 = coord(1/3)
    
    Abstract
    Throughout an information search, a user needs to make sense of the information found to create an understanding. This requires cognitive effort that can be demanding. Building on prior sensemaking models and expanding them with ideas from learning and cognitive psychology, we examined the use of cognitive mechanisms during individual sensemaking. We conducted a qualitative user study of 15 students who searched for and made sense of information for business analysis and news writing tasks. Through the analysis of think-aloud protocols, recordings of screen movements, intermediate work products of sensemaking, including notes and concept maps, and final reports, we observed the use of 17 data-driven and structure-driven mechanisms for processing new information, examining individual concepts and relationships, and detecting anomalies. These cognitive mechanisms, as the basic operators that move sensemaking forward, provide in-depth understanding of how people process information to produce sense. Meaningful learning and sensemaking are closely related, so our findings apply to learning as well. Our results contribute to a better understanding of the sensemaking process-how people think-and this better understanding can inform the teaching of thinking skills and the design of improved sensemaking assistants and mind tools.
  12. Berti, Jr., D.W.; Lima, G.; Maculan, B.; Soergel, D.: Computer-assisted checking of conceptual relationships in a large thesaurus (2018) 0.01
    0.009081715 = product of:
      0.027245143 = sum of:
        0.027245143 = product of:
          0.054490287 = sum of:
            0.054490287 = weight(_text_:22 in 4721) [ClassicSimilarity], result of:
              0.054490287 = score(doc=4721,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.30952093 = fieldWeight in 4721, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4721)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    17. 1.2019 19:04:22
  13. Zhang, P.; Soergel, D.: Towards a comprehensive model of the cognitive process and mechanisms of individual sensemaking (2014) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 1344) [ClassicSimilarity], result of:
              0.03405643 = score(doc=1344,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 1344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1344)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2014 16:55:39
  14. Soergel, D.: Unleashing the power of data through organization : structure and connections for meaning, learning and discovery (2015) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 2376) [ClassicSimilarity], result of:
              0.03405643 = score(doc=2376,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 2376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2376)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27.11.2015 20:52:22