Search (6 results, page 1 of 1)

  • × author_ss:"Vakkari, P."
  • × theme_ss:"Suchtaktik"
  1. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.08
    0.082081 = product of:
      0.12312149 = sum of:
        0.10609328 = weight(_text_:search in 4573) [ClassicSimilarity], result of:
          0.10609328 = score(doc=4573,freq=20.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.60717577 = fieldWeight in 4573, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.03405643 = score(doc=4573,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
  2. Vakkari, P.; Pennanen, M.; Serola, S.: Changes of search terms and tactics while writing a research proposal : a longitudinal case study (2003) 0.07
    0.07461396 = product of:
      0.11192093 = sum of:
        0.09489272 = weight(_text_:search in 1073) [ClassicSimilarity], result of:
          0.09489272 = score(doc=1073,freq=16.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.54307455 = fieldWeight in 1073, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1073)
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 1073) [ClassicSimilarity], result of:
              0.03405643 = score(doc=1073,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 1073, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1073)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The study analyses how students' growing understanding of the topic and search experience were related to their choice of search tactics and terms while preparing a research proposal for a small empirical study. In addition to that, the findings of the study are used to test Vakkari's (2001) theory of task-based IR. The research subjects were 22 students of psychology attending a seminar for preparing the proposal. They made a search for their task in PsychINFO database at the beginning and end of the seminar. Data were collected in several ways. A pre- and post-search interview was conducted in both sessions. The students were asked to think aloud in the sessions. This was recorded as were the transaction logs. The results show that search experience was slightly related to the change of facets. Although the students' vocabulary of the topic grew generating an increased use of specific terms between the sessions, their use of search tactics and operators remained fairly constant. There was no correlation between the terms and tactics used and the total number of useful references found. By comparing these results with the findings of relevant earlier studies the conclusion was drawn that domain knowledge has an impact on searching assuming that users have a sufficient command of the system used. This implies that the tested theory of task-based IR is valid on condition that the searchers are experienced. It is suggested that the theory should be enriched by including search experience in its scope.
  3. Vakkari, P.; Huuskonen, S.: Search effort degrades search output but improves task outcome (2012) 0.03
    0.033549644 = product of:
      0.100648925 = sum of:
        0.100648925 = weight(_text_:search in 46) [ClassicSimilarity], result of:
          0.100648925 = score(doc=46,freq=18.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.5760175 = fieldWeight in 46, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=46)
      0.33333334 = coord(1/3)
    
    Abstract
    We analyzed how effort in searching is associated with search output and task outcome. In a field study, we examined how students' search effort for an assigned learning task was associated with precision and relative recall, and how this was associated to the quality of learning outcome. The study subjects were 41 medical students writing essays for a class in medicine. Searching in Medline was part of their assignment. The data comprised students' search logs in Medline, their assessment of the usefulness of references retrieved, a questionnaire concerning the search process, and evaluation scores of the essays given by the teachers. Pearson correlation was calculated for answering the research questions. Finally, a path model for predicting task outcome was built. We found that effort in the search process degraded precision but improved task outcome. There were two major mechanisms reducing precision while enhancing task outcome. Effort in expanding Medical Subject Heading (MeSH) terms within search sessions and effort in assessing and exploring documents in the result list between the sessions degraded precision, but led to better task outcome. Thus, human effort compensated bad retrieval results on the way to good task outcome. Findings suggest that traditional effectiveness measures in information retrieval should be complemented with evaluation measures for search process and outcome.
  4. Vakkari, P.: ¬A theory of the task-based information retrieval process : a summary and generalisation of a longitudinal study (2001) 0.02
    0.023243874 = product of:
      0.06973162 = sum of:
        0.06973162 = weight(_text_:search in 4493) [ClassicSimilarity], result of:
          0.06973162 = score(doc=4493,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.39907667 = fieldWeight in 4493, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4493)
      0.33333334 = coord(1/3)
    
    Abstract
    The aim of this article is threefold: (1) to give a summary of empirical results reported earlier on relations between students' problem stages in the course of writing their research proposals for a master's thesis and the information sought, choice of search terms and tactics and relevance assessments of the information found for that task; (2) to show how the findings of the study refine Kuhlthau's model of the information search process in the field of information retrieval (IR); and (3) to construe a tentative theory of a task-based IR process based on the supported hypotheses. The results of the empirical studies show that there is a close connection between the students' problem stages (mental model) in the task performance and the information sought, the search tactics used and the assessment of the relevance and utility of the information found. The corroborated hypotheses expand the ideas in Kuhlthau's model in the domain of IR. A theory of task-based information searching based on the empirical findings of the study is presented.
  5. Vakkari, P.: Task-based information searching (2002) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 4288) [ClassicSimilarity], result of:
          0.056935627 = score(doc=4288,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 4288, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4288)
      0.33333334 = coord(1/3)
    
    Abstract
    The rationale for using information systems is to find information that helps us in our daily activities, be they tasks or interests. Systems are expected to support us in searching for and identifying useful information. Although the activities and tasks performed by humans generate information needs and searching, they have attracted little attention in studies of information searching. Such studies have concentrated an search tasks rather than the activities that trigger them. It is obvious that our understanding of information searching is only partial, if we are not able to connect aspects of searching to the related task. The expected contribution of information to the task is reflected in relevance assessments of the information items found, and in the search tactics and use of the system in general. Taking the task into account seems to be a necessary condition for understanding and explaining information searching, and, by extension, for effective systems design.
  6. Vakkari, P.: Task complexity, information types, search strategies and relevance : integrating studies on information retrieval and seeking (1999) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 299) [ClassicSimilarity], result of:
          0.03354964 = score(doc=299,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=299)
      0.33333334 = coord(1/3)