Search (5 results, page 1 of 1)

  • × subject_ss:"Text processing (Computer science)"
  1. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (1999) 0.11
    0.11103386 = product of:
      0.16655079 = sum of:
        0.08051914 = weight(_text_:search in 5777) [ClassicSimilarity], result of:
          0.08051914 = score(doc=5777,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 5777, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=5777)
        0.08603165 = product of:
          0.1720633 = sum of:
            0.1720633 = weight(_text_:engines in 5777) [ClassicSimilarity], result of:
              0.1720633 = score(doc=5777,freq=8.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.67362815 = fieldWeight in 5777, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5777)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book discusses many of the key design issues for building search engines and emphazises the important role that applied mathematics can play in improving information retrieval. The authors discuss not only important data structures, algorithms, and software but also user-centered issues such as interfaces, manual indexing, and document preparation. They also present some of the current problems in information retrieval that many not be familiar to applied mathematicians and computer scientists and some of the driving computational methods (SVD, SDD) for automated conceptual indexing
    LCSH
    Web search engines
    Subject
    Web search engines
  2. Berry, M.W.; Browne, M.: Understanding search engines : mathematical modeling and text retrieval (2005) 0.10
    0.097439155 = product of:
      0.14615873 = sum of:
        0.075914174 = weight(_text_:search in 7) [ClassicSimilarity], result of:
          0.075914174 = score(doc=7,freq=16.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.43445963 = fieldWeight in 7, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=7)
        0.07024455 = product of:
          0.1404891 = sum of:
            0.1404891 = weight(_text_:engines in 7) [ClassicSimilarity], result of:
              0.1404891 = score(doc=7,freq=12.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.5500151 = fieldWeight in 7, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=7)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Significant changes bring the text up to date on current information retrieval methods: for example the addition of a new chapter on link-structure algorithms used in search engines such as Google. The chapter on user interface has been rewritten to specifically focus on search engine usability. In addition the authors have added new recommendations for further reading and expanded the bibliography, and have updated and streamlined the index to make it more reader friendly.
    Content
    Inhalt: Introduction Document File Preparation - Manual Indexing - Information Extraction - Vector Space Modeling - Matrix Decompositions - Query Representations - Ranking and Relevance Feedback - Searching by Link Structure - User Interface - Book Format Document File Preparation Document Purification and Analysis - Text Formatting - Validation - Manual Indexing - Automatic Indexing - Item Normalization - Inverted File Structures - Document File - Dictionary List - Inversion List - Other File Structures Vector Space Models Construction - Term-by-Document Matrices - Simple Query Matching - Design Issues - Term Weighting - Sparse Matrix Storage - Low-Rank Approximations Matrix Decompositions QR Factorization - Singular Value Decomposition - Low-Rank Approximations - Query Matching - Software - Semidiscrete Decomposition - Updating Techniques Query Management Query Binding - Types of Queries - Boolean Queries - Natural Language Queries - Thesaurus Queries - Fuzzy Queries - Term Searches - Probabilistic Queries Ranking and Relevance Feedback Performance Evaluation - Precision - Recall - Average Precision - Genetic Algorithms - Relevance Feedback Searching by Link Structure HITS Method - HITS Implementation - HITS Summary - PageRank Method - PageRank Adjustments - PageRank Implementation - PageRank Summary User Interface Considerations General Guidelines - Search Engine Interfaces - Form Fill-in - Display Considerations - Progress Indication - No Penalties for Error - Results - Test and Retest - Final Considerations Further Reading
    LCSH
    Web search engines
    Subject
    Web search engines
  3. Semantic keyword-based search on structured data sources : First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers (2016) 0.05
    0.052853763 = product of:
      0.079280645 = sum of:
        0.06001542 = weight(_text_:search in 2753) [ClassicSimilarity], result of:
          0.06001542 = score(doc=2753,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.34347048 = fieldWeight in 2753, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2753)
        0.019265225 = product of:
          0.03853045 = sum of:
            0.03853045 = weight(_text_:22 in 2753) [ClassicSimilarity], result of:
              0.03853045 = score(doc=2753,freq=4.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.21886435 = fieldWeight in 2753, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2753)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book constitutes the thoroughly refereed post-conference proceedings of the First COST Action IC1302 International KEYSTONE Conference on semantic Keyword-based Search on Structured Data Sources, IKC 2015, held in Coimbra, Portugal, in September 2015. The 13 revised full papers, 3 revised short papers, and 2 invited papers were carefully reviewed and selected from 22 initial submissions. The paper topics cover techniques for keyword search, semantic data management, social Web and social media, information retrieval, benchmarking for search on big data.
    Content
    Inhalt: Professional Collaborative Information Seeking: On Traceability and Creative Sensemaking / Nürnberger, Andreas (et al.) - Recommending Web Pages Using Item-Based Collaborative Filtering Approaches / Cadegnani, Sara (et al.) - Processing Keyword Queries Under Access Limitations / Calì, Andrea (et al.) - Balanced Large Scale Knowledge Matching Using LSH Forest / Cochez, Michael (et al.) - Improving css-KNN Classification Performance by Shifts in Training Data / Draszawka, Karol (et al.) - Classification Using Various Machine Learning Methods and Combinations of Key-Phrases and Visual Features / HaCohen-Kerner, Yaakov (et al.) - Mining Workflow Repositories for Improving Fragments Reuse / Harmassi, Mariem (et al.) - AgileDBLP: A Search-Based Mobile Application for Structured Digital Libraries / Ifrim, Claudia (et al.) - Support of Part-Whole Relations in Query Answering / Kozikowski, Piotr (et al.) - Key-Phrases as Means to Estimate Birth and Death Years of Jewish Text Authors / Mughaz, Dror (et al.) - Visualization of Uncertainty in Tag Clouds / Platis, Nikos (et al.) - Multimodal Image Retrieval Based on Keywords and Low-Level Image Features / Pobar, Miran (et al.) - Toward Optimized Multimodal Concept Indexing / Rekabsaz, Navid (et al.) - Semantic URL Analytics to Support Efficient Annotation of Large Scale Web Archives / Souza, Tarcisio (et al.) - Indexing of Textual Databases Based on Lexical Resources: A Case Study for Serbian / Stankovic, Ranka (et al.) - Domain-Specific Modeling: Towards a Food and Drink Gazetteer / Tagarev, Andrey (et al.) - Analysing Entity Context in Multilingual Wikipedia to Support Entity-Centric Retrieval Applications / Zhou, Yiwei (et al.)
    Date
    1. 2.2016 18:25:22
  4. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.02
    0.015495917 = product of:
      0.04648775 = sum of:
        0.04648775 = weight(_text_:search in 4041) [ClassicSimilarity], result of:
          0.04648775 = score(doc=4041,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2660511 = fieldWeight in 4041, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=4041)
      0.33333334 = coord(1/3)
    
    Abstract
    Class-tested and coherent, this textbook teaches information retrieval, including web search, text classification, and text clustering from basic concepts. Ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students. Slides and additional exercises are available for lecturers. - This book provides what Salton and Van Rijsbergen both failed to achieve. Even more important, unlike some other books in IR, the authors appear to care about making the theory as accessible as possible to the reader, on occasion including short primers to certain topics or choosing to explain difficult concepts using simplified approaches. Its coverage [is] excellent, the quality of writing high and I was surprised how much I learned from reading it. I think the online resources are impressive.
    Content
    Inhalt: Boolean retrieval - The term vocabulary & postings lists - Dictionaries and tolerant retrieval - Index construction - Index compression - Scoring, term weighting & the vector space model - Computing scores in a complete search system - Evaluation in information retrieval - Relevance feedback & query expansion - XML retrieval - Probabilistic information retrieval - Language models for information retrieval - Text classification & Naive Bayes - Vector space classification - Support vector machines & machine learning on documents - Flat clustering - Hierarchical clustering - Matrix decompositions & latent semantic indexing - Web search basics - Web crawling and indexes - Link analysis Vgl. die digitale Fassung unter: http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.
  5. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 3274) [ClassicSimilarity], result of:
          0.04025957 = score(doc=3274,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 3274, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
      0.33333334 = coord(1/3)
    
    Content
    The papers are organized in several sessions and tracks: general track on ontology evolution, engineering, and frameworks, semantic Web and metadata extraction, modelling, interoperability and exploratory search, data analysis, reuse and visualization; track on digital libraries, information retrieval, linked and social data; track on metadata and semantics for open repositories, research information systems and data infrastructure; track on metadata and semantics for agriculture, food and environment; track on metadata and semantics for cultural collections and applications; track on European and national projects.