Search (12 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × year_i:[2020 TO 2030}
  1. Zaitseva, E.M.: Developing linguistic tools of thematic search in library information systems (2023) 0.03
    0.033549644 = product of:
      0.100648925 = sum of:
        0.100648925 = weight(_text_:search in 1187) [ClassicSimilarity], result of:
          0.100648925 = score(doc=1187,freq=18.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.5760175 = fieldWeight in 1187, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
      0.33333334 = coord(1/3)
    
    Abstract
    Within the R&D program "Information support of research by scientists and specialists on the basis of RNPLS&T Open Archive - the system of scientific knowledge aggregation", the RNPLS&T analyzes the use of linguistic tools of thematic search in the modern library information systems and the prospects for their development. The author defines the key common characteristics of e-catalogs of the largest Russian libraries revealed at the first stage of the analysis. Based on the specified common characteristics and detailed comparison analysis, the author outlines and substantiates the vectors for enhancing search inter faces of e-catalogs. The focus is made on linguistic tools of thematic search in library information systems; the key vectors are suggested: use of thematic search at different search levels with the clear-cut level differentiation; use of combined functionality within thematic search system; implementation of classification search in all e-catalogs; hierarchical representation of classifications; use of the matching systems for classification information retrieval languages, and in the long term classification and verbal information retrieval languages, and various verbal information retrieval languages. The author formulates practical recommendations to improve thematic search in library information systems.
  2. Metz, C.: ¬The new chatbots could change the world : can you trust them? (2022) 0.03
    0.026839714 = product of:
      0.08051914 = sum of:
        0.08051914 = weight(_text_:search in 854) [ClassicSimilarity], result of:
          0.08051914 = score(doc=854,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 854, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.09375 = fieldNorm(doc=854)
      0.33333334 = coord(1/3)
    
    Abstract
    Siri, Google Search, online marketing and your child's homework will never be the same. Then there's the misinformation problem.
  3. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.03
    0.026615571 = product of:
      0.07984671 = sum of:
        0.07984671 = product of:
          0.23954013 = sum of:
            0.23954013 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.23954013 = score(doc=862,freq=2.0), product of:
                0.4262143 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05027291 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  4. ¬Der Student aus dem Computer (2023) 0.02
    0.015893001 = product of:
      0.047679 = sum of:
        0.047679 = product of:
          0.095358 = sum of:
            0.095358 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.095358 = score(doc=1079,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27. 1.2023 16:22:55
  5. Andrushchenko, M.; Sandberg, K.; Turunen, R.; Marjanen, J.; Hatavara, M.; Kurunmäki, J.; Nummenmaa, T.; Hyvärinen, M.; Teräs, K.; Peltonen, J.; Nummenmaa, J.: Using parsed and annotated corpora to analyze parliamentarians' talk in Finland (2022) 0.02
    0.015815454 = product of:
      0.04744636 = sum of:
        0.04744636 = weight(_text_:search in 471) [ClassicSimilarity], result of:
          0.04744636 = score(doc=471,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=471)
      0.33333334 = coord(1/3)
    
    Abstract
    We present a search system for grammatically analyzed corpora of Finnish parliamentary records and interviews with former parliamentarians, annotated with metadata of talk structure and involved parliamentarians, and discuss their use through carefully chosen digital humanities case studies. We first introduce the construction, contents, and principles of use of the corpora. Then we discuss the application of the search system and the corpora to study how politicians talk about power, how ideological terms are used in political speech, and how to identify narratives in the data. All case studies stem from questions in the humanities and the social sciences, but rely on the grammatically parsed corpora in both identifying and quantifying passages of interest. Finally, the paper discusses the role of natural language processing methods for questions in the (digital) humanities. It makes the claim that a digital humanities inquiry of parliamentary speech and interviews with politicians cannot only rely on computational humanities modeling, but needs to accommodate a range of perspectives starting with simple searches, quantitative exploration, and ending with modeling. Furthermore, the digital humanities need a more thorough discussion about how the utilization of tools from information science and technologies alter the research questions posed in the humanities.
  6. Ali, C.B.; Haddad, H.; Slimani, Y.: Multi-word terms selection for information retrieval (2022) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 900) [ClassicSimilarity], result of:
          0.03354964 = score(doc=900,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 900, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=900)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose A number of approaches and algorithms have been proposed over the years as a basis for automatic indexing. Many of these approaches suffer from precision inefficiency at low recall. The choice of indexing units has a great impact on search system effectiveness. The authors dive beyond simple terms indexing to propose a framework for multi-word terms (MWT) filtering and indexing. Design/methodology/approach In this paper, the authors rely on ranking MWT to filter them, keeping the most effective ones for the indexing process. The proposed model is based on filtering MWT according to their ability to capture the document topic and distinguish between different documents from the same collection. The authors rely on the hypothesis that the best MWT are those that achieve the greatest association degree. The experiments are carried out with English and French languages data sets. Findings The results indicate that this approach achieved precision enhancements at low recall, and it performed better than more advanced models based on terms dependencies. Originality/value Using and testing different association measures to select MWT that best describe the documents to enhance the precision in the first retrieved documents.
  7. Morris, V.: Automated language identification of bibliographic resources (2020) 0.01
    0.009081715 = product of:
      0.027245143 = sum of:
        0.027245143 = product of:
          0.054490287 = sum of:
            0.054490287 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.054490287 = score(doc=5749,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 3.2020 19:04:22
  8. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.009081715 = product of:
      0.027245143 = sum of:
        0.027245143 = product of:
          0.054490287 = sum of:
            0.054490287 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.054490287 = score(doc=835,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    29.12.2022 18:22:55
  9. Rieger, F.: Lügende Computer (2023) 0.01
    0.009081715 = product of:
      0.027245143 = sum of:
        0.027245143 = product of:
          0.054490287 = sum of:
            0.054490287 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.054490287 = score(doc=912,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16. 3.2023 19:22:55
  10. Aydin, Ö.; Karaarslan, E.: OpenAI ChatGPT generated literature review: : digital twin in healthcare (2022) 0.01
    0.0089465715 = product of:
      0.026839713 = sum of:
        0.026839713 = weight(_text_:search in 851) [ClassicSimilarity], result of:
          0.026839713 = score(doc=851,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.15360467 = fieldWeight in 851, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=851)
      0.33333334 = coord(1/3)
    
    Abstract
    Literature review articles are essential to summarize the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions how Artificial Intelligence can be used in this process. We used ChatGPT to create a literature review article to show the stage of the OpenAI ChatGPT artificial intelligence application. As the subject, the applications of Digital Twin in the health field were chosen. Abstracts of the last three years (2020, 2021 and 2022) papers were obtained from the keyword "Digital twin in healthcare" search results on Google Scholar and paraphrased by ChatGPT. Later on, we asked ChatGPT questions. The results are promising; however, the paraphrased parts had significant matches when checked with the Ithenticate tool. This article is the first attempt to show the compilation and expression of knowledge will be accelerated with the help of artificial intelligence. We are still at the beginning of such advances. The future academic publishing process will require less human effort, which in turn will allow academics to focus on their studies. In future studies, we will monitor citations to this study to evaluate the academic validity of the content produced by the ChatGPT. 1. Introduction OpenAI ChatGPT (ChatGPT, 2022) is a chatbot based on the OpenAI GPT-3 language model. It is designed to generate human-like text responses to user input in a conversational context. OpenAI ChatGPT is trained on a large dataset of human conversations and can be used to create responses to a wide range of topics and prompts. The chatbot can be used for customer service, content creation, and language translation tasks, creating replies in multiple languages. OpenAI ChatGPT is available through the OpenAI API, which allows developers to access and integrate the chatbot into their applications and systems. OpenAI ChatGPT is a variant of the GPT (Generative Pre-trained Transformer) language model developed by OpenAI. It is designed to generate human-like text, allowing it to engage in conversation with users naturally and intuitively. OpenAI ChatGPT is trained on a large dataset of human conversations, allowing it to understand and respond to a wide range of topics and contexts. It can be used in various applications, such as chatbots, customer service agents, and language translation systems. OpenAI ChatGPT is a state-of-the-art language model able to generate coherent and natural text that can be indistinguishable from text written by a human. As an artificial intelligence, ChatGPT may need help to change academic writing practices. However, it can provide information and guidance on ways to improve people's academic writing skills.
  11. Jha, A.: Why GPT-4 isn't all it's cracked up to be (2023) 0.01
    0.0078282505 = product of:
      0.02348475 = sum of:
        0.02348475 = weight(_text_:search in 923) [ClassicSimilarity], result of:
          0.02348475 = score(doc=923,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.1344041 = fieldWeight in 923, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.02734375 = fieldNorm(doc=923)
      0.33333334 = coord(1/3)
    
    Abstract
    He doesn't dismiss the potential of LLMs to become useful assistants in all sorts of ways-Google and Microsoft have already announced that they will be integrating LLMs into their search and office productivity software. But he talked me through some of his criticisms of the technology's apparent capabilities. At the heart of Dr Marcus's thoughtful critique is an attempt to put LLMs into proper context. Deep learning, the underlying technology that makes LLMs work, is only one piece of the puzzle in the quest for machine intelligence. To reach the level of artificial general intelligence (AGI) that many tech companies strive for-i.e. machines that can plan, reason and solve problems in the way human brains can-they will need to deploy a suite of other AI techniques. These include, for example, the kind of "symbolic AI" that was popular before artificial neural networks and deep learning became all the rage.
  12. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.03405643 = score(doc=1171,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    23.11.2023 19:07:22