Search (195 results, page 2 of 10)

  • × theme_ss:"Informetrie"
  1. Stuart, D.: Web metrics for library and information professionals (2014) 0.05
    0.050775357 = product of:
      0.07616303 = sum of:
        0.040676784 = weight(_text_:search in 2274) [ClassicSimilarity], result of:
          0.040676784 = score(doc=2274,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.23279473 = fieldWeight in 2274, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.035486247 = product of:
          0.070972495 = sum of:
            0.070972495 = weight(_text_:engines in 2274) [ClassicSimilarity], result of:
              0.070972495 = score(doc=2274,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.27785745 = fieldWeight in 2274, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2274)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    1. Introduction. MetricsIndicators -- Web metrics and Ranganathan's laws of library science -- Web metrics for the library and information professional -- The aim of this book -- The structure of the rest of this book -- 2. Bibliometrics, webometrics and web metrics. Web metrics -- Information science metrics -- Web analytics -- Relational and evaluative metrics -- Evaluative web metrics -- Relational web metrics -- Validating the results -- 3. Data collection tools. The anatomy of a URL, web links and the structure of the web -- Search engines 1.0 -- Web crawlers -- Search engines 2.0 -- Post search engine 2.0: fragmentation -- 4. Evaluating impact on the web. Websites -- Blogs -- Wikis -- Internal metrics -- External metrics -- A systematic approach to content analysis -- 5. Evaluating social media impact. Aspects of social network sites -- Typology of social network sites -- Research and tools for specific sites and services -- Other social network sites -- URL shorteners: web analytic links on any site -- General social media impact -- Sentiment analysis -- 6. Investigating relationships between actors. Social network analysis methods -- Sources for relational network analysis -- 7. Exploring traditional publications in a new environment. More bibliographic items -- Full text analysis -- Greater context -- 8. Web metrics and the web of data. The web of data -- Building the semantic web -- Implications of the web of data for web metrics -- Investigating the web of data today -- SPARQL -- Sindice -- LDSpider: an RDF web crawler -- 9. The future of web metrics and the library and information professional. How far we have come -- The future of web metrics -- The future of the library and information professional and web metrics.
  2. Thelwall, M.: Conceptualizing documentation on the Web : an evaluation of different heuristic-based models for counting links between university Web sites (2002) 0.05
    0.04626411 = product of:
      0.06939616 = sum of:
        0.03354964 = weight(_text_:search in 978) [ClassicSimilarity], result of:
          0.03354964 = score(doc=978,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=978)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 978) [ClassicSimilarity], result of:
              0.07169304 = score(doc=978,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 978, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=978)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    All known previous Web link studies have used the Web page as the primary indivisible source document for counting purposes. Arguments are presented to explain why this is not necessarily optimal and why other alternatives have the potential to produce better results. This is despite the fact that individual Web files are often the only choice if search engines are used for raw data and are the easiest basic Web unit to identify. The central issue is of defining the Web "document": that which should comprise the single indissoluble unit of coherent material. Three alternative heuristics are defined for the educational arena based upon the directory, the domain and the whole university site. These are then compared by implementing them an a set of 108 UK university institutional Web sites under the assumption that a more effective heuristic will tend to produce results that correlate more highly with institutional research productivity. It was discovered that the domain and directory models were able to successfully reduce the impact of anomalous linking behavior between pairs of Web sites, with the latter being the method of choice. Reasons are then given as to why a document model an its own cannot eliminate all anomalies in Web linking behavior. Finally, the results from all models give a clear confirmation of the very strong association between the research productivity of a UK university and the number of incoming links from its peers' Web sites.
  3. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.05
    0.04626411 = product of:
      0.06939616 = sum of:
        0.03354964 = weight(_text_:search in 4279) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4279,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 4279) [ClassicSimilarity], result of:
              0.07169304 = score(doc=4279,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 4279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  4. Khan, G.F.; Park, H.W.: Measuring the triple helix on the web : longitudinal trends in the university-industry-government relationship in Korea (2011) 0.05
    0.04626411 = product of:
      0.06939616 = sum of:
        0.03354964 = weight(_text_:search in 4944) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4944,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4944, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4944)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 4944) [ClassicSimilarity], result of:
              0.07169304 = score(doc=4944,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 4944, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4944)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study examines longitudinal trends in the university-industry-government (UIG) relationship on the web in the Korean context by using triple helix (TH) indicators. The study considers various Internet resources, including websites/documents, blogs, online cafes, Knowledge-In (comparable to Yahoo! Answers), and online news sites, by employing webometric and co-word analysis techniques to ascertain longitudinal trends in the UIG relationship, which have received considerable attention in the last decade. The results indicate that the UIG relationship varied according to the government's policies and that there was some tension in the longitudinal UIG relationship. Further, websites/documents and blogs were the most reliable sources for examining the strength of and variations in the bilateral and trilateral UIG relationships on the web. In addition, web-based T(uig) values showed a stronger trilateral relationship and larger variations in the UIG relationship than Science Citation Index-based T(uig) values. The results suggest that various Internet resources (e.g., advanced search engines, websites/documents, blogs, and online cafes), together with TH indicators, can be used to explore the UIG relationship on the web.
  5. Delgado-Quirós, L.; Aguillo, I.F.; Martín-Martín, A.; López-Cózar, E.D.; Orduña-Malea, E.; Ortega, J.L.: Why are these publications missing? : uncovering the reasons behind the exclusion of documents in free-access scholarly databases (2024) 0.05
    0.04626411 = product of:
      0.06939616 = sum of:
        0.03354964 = weight(_text_:search in 1201) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1201,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1201, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1201)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 1201) [ClassicSimilarity], result of:
              0.07169304 = score(doc=1201,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 1201, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study analyses the coverage of seven free-access bibliographic databases (Crossref, Dimensions-non-subscription version, Google Scholar, Lens, Microsoft Academic, Scilit, and Semantic Scholar) to identify the potential reasons that might cause the exclusion of scholarly documents and how they could influence coverage. To do this, 116 k randomly selected bibliographic records from Crossref were used as a baseline. API endpoints and web scraping were used to query each database. The results show that coverage differences are mainly caused by the way each service builds their databases. While classic bibliographic databases ingest almost the exact same content from Crossref (Lens and Scilit miss 0.1% and 0.2% of the records, respectively), academic search engines present lower coverage (Google Scholar does not find: 9.8%, Semantic Scholar: 10%, and Microsoft Academic: 12%). Coverage differences are mainly attributed to external factors, such as web accessibility and robot exclusion policies (39.2%-46%), and internal requirements that exclude secondary content (6.5%-11.6%). In the case of Dimensions, the only classic bibliographic database with the lowest coverage (7.6%), internal selection criteria such as the indexation of full books instead of book chapters (65%) and the exclusion of secondary content (15%) are the main motives of missing publications.
  6. Hayer, L.: Lazarsfeld zitiert : eine bibliometrische Analyse (2008) 0.03
    0.03371857 = product of:
      0.050577857 = sum of:
        0.03354964 = weight(_text_:search in 1934) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1934,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1934, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1934)
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 1934) [ClassicSimilarity], result of:
              0.03405643 = score(doc=1934,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 1934, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1934)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Um sich einer Antwort auf die Frage anzunähern, welche Bedeutung der Nachlass eines Wissenschaftlers wie jener Paul F. Lazarsfelds (mit zahlreichen noch unveröffentlichten Schriften) für die aktuelle Forschung haben könne, kann untersucht werden, wie häufig dieser Wissenschaftler zitiert wird. Wenn ein Autor zitiert wird, wird er auch genutzt. Wird er über einen langen Zeitraum oft genutzt, ist vermutlich auch die Auseinandersetzung mit seinem Nachlass von Nutzen. Außerdem kann aufgrund der Zitierungen festgestellt werden, was aus dem Lebenswerk eines Wissenschaftlers für die aktuelle Forschung relevant erscheint. Daraus können die vordringlichen Fragestellungen in der Bearbeitung des Nachlasses abgeleitet werden. Die Aufgabe für die folgende Untersuchung lautete daher: Wie oft wird Paul F. Lazarsfeld zitiert? Dabei interessierte auch: Wer zitiert wo? Die Untersuchung wurde mit Hilfe der Meta-Datenbank "ISI Web of Knowledge" durchgeführt. In dieser wurde im "Web of Science" mit dem Werkzeug "Cited Reference Search" nach dem zitierten Autor (Cited Author) "Lazarsfeld P*" gesucht. Diese Suche ergab 1535 Referenzen (References). Werden alle Referenzen gewählt, führt dies zu 4839 Ergebnissen (Results). Dabei wurden die Datenbanken SCI-Expanded, SSCI und A&HCI verwendet. Bei dieser Suche wurden die Publikationsjahre 1941-2008 analysiert. Vor 1956 wurden allerdings nur sehr wenige Zitate gefunden: 1946 fünf, ansonsten maximal drei, 1942-1944 und 1949 überhaupt keines. Zudem ist das Jahr 2008 noch lange nicht zu Ende. (Es gab jedoch schon vor Ende März 24 Zitate!)
    Date
    22. 6.2008 12:54:12
  7. Walters, W.H.; Linvill, A.C.: Bibliographic index coverage of open-access journals in six subject areas (2011) 0.03
    0.03371857 = product of:
      0.050577857 = sum of:
        0.03354964 = weight(_text_:search in 4635) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4635,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4635, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4635)
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 4635) [ClassicSimilarity], result of:
              0.03405643 = score(doc=4635,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 4635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4635)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We investigate the extent to which open-access (OA) journals and articles in biology, computer science, economics, history, medicine, and psychology are indexed in each of 11 bibliographic databases. We also look for variations in index coverage by journal subject, journal size, publisher type, publisher size, date of first OA issue, region of publication, language of publication, publication fee, and citation impact factor. Two databases, Biological Abstracts and PubMed, provide very good coverage of the OA journal literature, indexing 60 to 63% of all OA articles in their disciplines. Five databases provide moderately good coverage (22-41%), and four provide relatively poor coverage (0-12%). OA articles in biology journals, English-only journals, high-impact journals, and journals that charge publication fees of $1,000 or more are especially likely to be indexed. Conversely, articles from OA publishers in Africa, Asia, or Central/South America are especially unlikely to be indexed. Four of the 11 databases index commercially published articles at a substantially higher rate than articles published by universities, scholarly societies, nonprofit publishers, or governments. Finally, three databases-EBSCO Academic Search Complete, ProQuest Research Library, and Wilson OmniFile-provide less comprehensive coverage of OA articles than of articles in comparable subscription journals.
  8. Haley, M.R.: Ranking top economics and finance journals using Microsoft academic search versus Google scholar : How does the new publish or perish option compare? (2014) 0.03
    0.0328718 = product of:
      0.0986154 = sum of:
        0.0986154 = weight(_text_:search in 1255) [ClassicSimilarity], result of:
          0.0986154 = score(doc=1255,freq=12.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.5643796 = fieldWeight in 1255, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1255)
      0.33333334 = coord(1/3)
    
    Abstract
    Recently, Harzing's Publish or Perish software was updated to include Microsoft Academic Search as a second citation database search option for computing various citation-based metrics. This article explores the new search option by scoring 50 top economics and finance journals and comparing them with the results obtained using the original Google Scholar-based search option. The new database delivers significantly smaller scores for all metrics, but the rank correlations across the two databases for the h-index, g-index, AWCR, and e-index are significantly correlated, especially when the time frame is restricted to more recent years. Comparisons are also made to the Article Influence score from eigenfactor.org and to the RePEc h-index, both of which adjust for journal-level self-citations.
    Object
    Microsoft Academic Search
  9. Hood, W.W.; Wilson, C.S.: ¬The scatter of documents over databases in different subject domains : how many databases are needed? (2001) 0.03
    0.025006426 = product of:
      0.07501928 = sum of:
        0.07501928 = weight(_text_:search in 6936) [ClassicSimilarity], result of:
          0.07501928 = score(doc=6936,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 6936, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6936)
      0.33333334 = coord(1/3)
    
    Abstract
    The distribution of bibliographic records in on-line bibliographic databases is examined using 14 different search topics. These topics were searched using the DIALOG database host, and using as many suitable databases as possible. The presence of duplicate records in the searches was taken into consideration in the analysis, and the problem with lexical ambiguity in at least one search topic is discussed. The study answers questions such as how many databases are needed in a multifile search for particular topics, and what coverage will be achieved using a certain number of databases. The distribution of the percentages of records retrieved over a number of databases for 13 of the 14 search topics roughly fell into three groups: (1) high concentration of records in one database with about 80% coverage in five to eight databases; (2) moderate concentration in one database with about 80% coverage in seven to 10 databases; and (3) low concentration in one database with about 80% coverage in 16 to 19 databases. The study does conform with earlier results, but shows that the number of databases needed for searches with varying complexities of search strategies, is much more topic dependent than previous studies would indicate.
  10. He, J.; Ping, Q.; Lou, W.; Chen, C.: PaperPoles : facilitating adaptive visual exploration of scientific publications by citation links (2019) 0.03
    0.025006426 = product of:
      0.07501928 = sum of:
        0.07501928 = weight(_text_:search in 5326) [ClassicSimilarity], result of:
          0.07501928 = score(doc=5326,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 5326, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5326)
      0.33333334 = coord(1/3)
    
    Abstract
    Finding relevant publications is a common task. Typically, a researcher browses through a list of publications and traces additional relevant publications. When relevant publications are identified, the list may be expanded by the citation links of the relevant publications. The information needs of researchers may change as they go through such iterative processes. The exploration process quickly becomes cumbersome as the list expands. Most existing academic search systems tend to be limited in terms of the extent to which searchers can adapt their search as they proceed. In this article, we introduce an adaptive visual exploration system named PaperPoles to support exploration of scientific publications in a context-aware environment. Searchers can express their information needs by intuitively formulating positive and negative queries. The search results are grouped and displayed in a cluster view, which shows aspects and relevance patterns of the results to support navigation and exploration. We conducted an experiment to compare PaperPoles with a list-based interface in performing two academic search tasks with different complexity. The results show that PaperPoles can improve the accuracy of searching for the simple and complex tasks. It can also reduce the completion time of searching and improve exploration effectiveness in the complex task. PaperPoles demonstrates a potentially effective workflow for adaptive visual search of complex information.
  11. Wiggers, G.; Verberne, S.; Loon, W. van; Zwenne, G.-J.: Bibliometric-enhanced legal information retrieval : combining usage and citations as flavors of impact relevance (2023) 0.03
    0.025006426 = product of:
      0.07501928 = sum of:
        0.07501928 = weight(_text_:search in 1022) [ClassicSimilarity], result of:
          0.07501928 = score(doc=1022,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 1022, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1022)
      0.33333334 = coord(1/3)
    
    Abstract
    Bibliometric-enhanced information retrieval uses bibliometrics (e.g., citations) to improve ranking algorithms. Using a data-driven approach, this article describes the development of a bibliometric-enhanced ranking algorithm for legal information retrieval, and the evaluation thereof. We statistically analyze the correlation between usage of documents and citations over time, using data from a commercial legal search engine. We then propose a bibliometric boost function that combines usage of documents with citation counts. The core of this function is an impact variable based on usage and citations that increases in influence as citations and usage counts become more reliable over time. We evaluate our ranking function by comparing search sessions before and after the introduction of the new ranking in the search engine. Using a cost model applied to 129,571 sessions before and 143,864 sessions after the intervention, we show that our bibliometric-enhanced ranking algorithm reduces the time of a search session of legal professionals by 2 to 3% on average for use cases other than known-item retrieval or updating behavior. Given the high hourly tariff of legal professionals and the limited time they can spend on research, this is expected to lead to increased efficiency, especially for users with extremely long search sessions.
  12. Harter, S.P.; Cheng, Y.-R.: Colinked descriptors : improving vocabulary selection for end-user searching (1996) 0.02
    0.023243874 = product of:
      0.06973162 = sum of:
        0.06973162 = weight(_text_:search in 4216) [ClassicSimilarity], result of:
          0.06973162 = score(doc=4216,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.39907667 = fieldWeight in 4216, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4216)
      0.33333334 = coord(1/3)
    
    Abstract
    This article introduces a new concept and technique for information retrieval called 'colinked descriptors'. Borrowed from an analogous idea in bibliometrics - cocited references - colinked descriptors provide a theory and method for identifying search terms that, by hypothesis, will be superior to those entered initially by a searcher. The theory suggests a means of moving automatically from 2 or more initial search terms, to other terms that should be superior in retrieval performance to the 2 original terms. A research project designed to test this colinked descriptor hypothesis is reported. The results suggest that the approach is effective, although methodological problems in testing the idea are reported. Algorithms to generate colinked descriptors can be incorporated easily into system interfaces, front-end or pre-search systems, or help software, in any database that employs a thesaurus. The potential use of colinked descriptors is a strong argument for building richer and more complex thesauri that reflect as many legitimate links among descriptors as possible
  13. Colina, J.: ¬Un algoritmo informetrico para la evaluacion de un vocabulario de busqueda (1995) 0.02
    0.022366427 = product of:
      0.06709928 = sum of:
        0.06709928 = weight(_text_:search in 6755) [ClassicSimilarity], result of:
          0.06709928 = score(doc=6755,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3840117 = fieldWeight in 6755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.078125 = fieldNorm(doc=6755)
      0.33333334 = coord(1/3)
    
    Footnote
    Übers. des Titels: An informetric algorithm for evaluation of search vocabularies
  14. Mutschke, P.; Mayr, P.: Science models for search : a study on combining scholarly information retrieval and scientometrics (2015) 0.02
    0.022366427 = product of:
      0.06709928 = sum of:
        0.06709928 = weight(_text_:search in 1695) [ClassicSimilarity], result of:
          0.06709928 = score(doc=1695,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3840117 = fieldWeight in 1695, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.078125 = fieldNorm(doc=1695)
      0.33333334 = coord(1/3)
    
  15. Williams, B.: Dimensions & VOSViewer bibliometrics in the reference interview (2020) 0.02
    0.022141634 = product of:
      0.0664249 = sum of:
        0.0664249 = weight(_text_:search in 5719) [ClassicSimilarity], result of:
          0.0664249 = score(doc=5719,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.38015217 = fieldWeight in 5719, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5719)
      0.33333334 = coord(1/3)
    
    Abstract
    The VOSviewer software provides easy access to bibliometric mapping using data from Dimensions, Scopus and Web of Science. The properly formatted and structured citation data, and the ease in which it can be exported open up new avenues for use during citation searches and eference interviews. This paper details specific techniques for using advanced searches in Dimensions, exporting the citation data, and drawing insights from the maps produced in VOS Viewer. These search techniques and data export practices are fast and accurate enough to build into reference interviews for graduate students, faculty, and post-PhD researchers. The search results derived from them are accurate and allow a more comprehensive view of citation networks embedded in ordinary complex boolean searches.
  16. Lievers, W.B.; Pilkey, A.K.: Characterizing the frequency of repeated citations : the effects of journal, subject area, and self-citation (2012) 0.02
    0.019369897 = product of:
      0.058109686 = sum of:
        0.058109686 = weight(_text_:search in 2725) [ClassicSimilarity], result of:
          0.058109686 = score(doc=2725,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.33256388 = fieldWeight in 2725, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2725)
      0.33333334 = coord(1/3)
    
    Abstract
    Previous studies have repeatedly demonstrated that the relevance of a citing document is related to the number of times with which the source document is cited. Despite the ease with which electronic documents would permit the incorporation of this information into citation-based document search and retrieval systems, the possibilities of repeated citations remain untapped. Part of this under-utilization may be due to the fact that very little is known regarding the pattern of repeated citations in scholarly literature or how this pattern may vary as a function of journal, academic discipline or self-citation. The current research addresses these unanswered questions in order to facilitate the future incorporation of repeated citation information into document search and retrieval systems. Using data mining of electronic texts, the citation characteristics of nine different journals, covering the three different academic fields (economics, computing, and medicine & biology), were characterized. It was found that the frequency (f) with which a reference is cited N or more times within a document is consistent across the sampled journals and academic fields. Self-citation causes an increase in frequency, and this effect becomes more pronounced for large N. The objectivity, automatability, and insensitivity of repeated citations to journal and discipline, present powerful opportunities for improving citation-based document search.
  17. Hudnut, S.K.: Finding answers by the numbers : statistical analysis of online search results (1993) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 555) [ClassicSimilarity], result of:
          0.056935627 = score(doc=555,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 555, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=555)
      0.33333334 = coord(1/3)
    
    Abstract
    Online searchers today no longer limit themselves to locating references to articles. More and more, they are called upon to locate specific answers to questions such as: Who is my chief competitor for this technology? Who is publishing the most on this subject? What is the geographic distribution of this product? These questions demand answers, not necessarily from record content, but from statistical analysis of the terms in a set of records. Most online services now provide a tool for statistical analysis such as GET on Orbit, ZOOM on ESA/IRS and RANK/RANK FILES on Dialog. With these commands, users can analyze term frequency to extrapolate very precise answers to a wide range of questions. This paper discusses the many uses of term frequency analysis and how it can be applied to areas of competitive intelligence, market analysis, bibliometric analysis and improvements of search results. The applications are illustrated by examples from Dialog
  18. Brooks, T.A.: How good are the best papers of JASIS? (2000) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 4593) [ClassicSimilarity], result of:
          0.056935627 = score(doc=4593,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 4593, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4593)
      0.33333334 = coord(1/3)
    
    Content
    Top by numbers of citations: (1) Saracevic, T. et al.: A study of information seeking and retrieving I-III (1988); (2) Bates, M.: Information search tactics (1979); (3) Cooper, W.S.: On selecting a measure of retrieval effectiveness (1973); (4) Marcus, R.S.: A experimental comparison of the effectiveness of computers and humans as search intermediaries (1983); (4) Fidel, R.: Online searching styles (1984)
  19. Walters, W.H.: Google Scholar coverage of a multidisciplinary field (2007) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 928) [ClassicSimilarity], result of:
          0.056935627 = score(doc=928,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 928, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=928)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper evaluates the content of Google Scholar and seven other databases (Academic Search Elite, AgeLine, ArticleFirst, GEOBASE, POPLINE, Social Sciences Abstracts, and Social Sciences Citation Index) within the multidisciplinary subject area of later-life migration. Each database is evaluated with reference to a set of 155 core articles selected in advance-the most important studies of later-life migration published from 1990 to 2000. Of the eight databases, Google Scholar indexes the greatest number of core articles (93%) and provides the most uniform publisher and date coverage. It covers 27% more core articles than the second-ranked database (SSCI) and 2.4 times as many as the lowest-ranked database (GEOBASE). At the same time, a substantial proportion of the citations provided by Google Scholar are incomplete (32%) or presented without abstracts (33%).
    Object
    Academic Search Elite
  20. Nicholls, P.T.: Empirical validation of Lotka's law (1986) 0.02
    0.01816343 = product of:
      0.054490287 = sum of:
        0.054490287 = product of:
          0.10898057 = sum of:
            0.10898057 = weight(_text_:22 in 5509) [ClassicSimilarity], result of:
              0.10898057 = score(doc=5509,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.61904186 = fieldWeight in 5509, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=5509)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 22(1986), S.417-419

Authors

Years

Languages

  • e 183
  • d 9
  • sp 2
  • ro 1
  • More… Less…

Types

  • a 191
  • el 4
  • m 3
  • s 1
  • More… Less…