Search (1 results, page 1 of 1)

  • × theme_ss:"Multilinguale Probleme"
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Drexel, G.: Knowledge engineering for intelligent information retrieval (2001) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 4043) [ClassicSimilarity], result of:
          0.04025957 = score(doc=4043,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 4043, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4043)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper presents a clustered approach to designing an overall ontological model together with a general rule-based component that serves as a mapping device. By observational criteria, a multi-lingual team of experts excerpts concepts from general communication in the media. The team, then, finds equivalent expressions in English, German, French, and Spanish. On the basis of a set of ontological and lexical relations, a conceptual network is built up. Concepts are thought to be universal. Objects unique in time and space are identified by names and will be explained by the universals as their instances. Our approach relies on multi-relational descriptions of concepts. It provides a powerful tool for documentation and conceptual language learning. First and foremost, our multi-lingual, polyhierarchical ontology fills the gap of semantically-based information retrieval by generating enhanced and improved queries for internet search