Search (2 results, page 1 of 1)

  • × theme_ss:"Retrievalstudien"
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Chen, H.; Martinez, J.; Kirchhoff, A.; Ng, T.D.; Schatz, B.R.: Alleviating search uncertainty through concept associations : automatic indexing, co-occurence analysis, and parallel computing (1998) 0.03
    0.026839714 = product of:
      0.08051914 = sum of:
        0.08051914 = weight(_text_:search in 5202) [ClassicSimilarity], result of:
          0.08051914 = score(doc=5202,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 5202, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=5202)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we report research on an algorithmic approach to alleviating search uncertainty in a large information space. Grounded on object filtering, automatic indexing, and co-occurence analysis, we performed a large-scale experiment using a parallel supercomputer (SGI Power Challenge) to analyze 400.000+ abstracts in an INSPEC computer engineering collection. Two system-generated thesauri, one based on a combined object filtering and automatic indexing method, and the other based on automatic indexing only, were compaed with the human-generated INSPEC subject thesaurus. Our user evaluation revealed that the system-generated thesauri were better than the INSPEC thesaurus in 'concept recall', but in 'concept precision' the 3 thesauri were comparable. Our analysis also revealed that the terms suggested by the 3 thesauri were complementary and could be used to significantly increase 'variety' in search terms the thereby reduce search uncertainty
  2. Tseng, Y.-H.: Solving vocabulary problems with interactive query expansion (1998) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 5159) [ClassicSimilarity], result of:
          0.03354964 = score(doc=5159,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 5159, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5159)
      0.33333334 = coord(1/3)
    
    Abstract
    One of the major causes of search failures in information retrieval systems is vocabulary mismatch. Presents a solution to the vocabulary problem through 2 strategies known as term suggestion (TS) and term relevance feedback (TRF). In TS, collection specific terms are extracted from the text collection. These terms and their frequencies constitute the keyword database for suggesting terms in response to users' queries. One effect of this term suggestion is that it functions as a dynamic directory if the query is a general term that contains broad meaning. In term relevance feedback, terms extracted from the top ranked documents retrieved from the previous query are shown to users for relevance feedback. In the experiment, interactive TS provides very high precision rates while achieving similar recall rates as n-gram matching. Local TRF achieves improvement in both precision and recall rate in a full text news database and degrades slightly in recall rate in bibliographic databases due to the very limited source of information for feedback. In terms of Rijsbergen's combined measure of recall and precision, both TS and TRF achieve better performance than n-gram matching, which implies that the greater improvement in precision rate compensates the slight degradation in recall rate for TS and TRF