Search (3 results, page 1 of 1)

  • × theme_ss:"Retrievalstudien"
  • × type_ss:"el"
  1. Schaer, P.; Mayr, P.; Sünkler, S.; Lewandowski, D.: How relevant is the long tail? : a relevance assessment study on million short (2016) 0.07
    0.073910534 = product of:
      0.1108658 = sum of:
        0.07501928 = weight(_text_:search in 3144) [ClassicSimilarity], result of:
          0.07501928 = score(doc=3144,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 3144, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3144)
        0.03584652 = product of:
          0.07169304 = sum of:
            0.07169304 = weight(_text_:engines in 3144) [ClassicSimilarity], result of:
              0.07169304 = score(doc=3144,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2806784 = fieldWeight in 3144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3144)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Users of web search engines are known to mostly focus on the top ranked results of the search engine result page. While many studies support this well known information seeking pattern only few studies concentrate on the question what users are missing by neglecting lower ranked results. To learn more about the relevance distributions in the so-called long tail we conducted a relevance assessment study with the Million Short long-tail web search engine. While we see a clear difference in the content between the head and the tail of the search engine result list we see no statistical significant differences in the binary relevance judgments and weak significant differences when using graded relevance. The tail contains different but still valuable results. We argue that the long tail can be a rich source for the diversification of web search engine result lists but it needs more evaluation to clearly describe the differences.
  2. Robertson, S.E.; Sparck Jones, K.: Simple, proven approaches to text retrieval (1997) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 4532) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4532,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4532)
      0.33333334 = coord(1/3)
    
    Abstract
    This technical note describes straightforward techniques for document indexing and retrieval that have been solidly established through extensive testing and are easy to apply. They are useful for many different types of text material, are viable for very large files, and have the advantage that they do not require special skills or training for searching, but are easy for end users. The document and text retrieval methods described here have a sound theoretical basis, are well established by extensive testing, and the ideas involved are now implemented in some commercial retrieval systems. Testing in the last few years has, in particular, shown that the methods presented here work very well with full texts, not only title and abstracts, and with large files of texts containing three quarters of a million documents. These tests, the TREC Tests (see Harman 1993 - 1997; IP&M 1995), have been rigorous comparative evaluations involving many different approaches to information retrieval. These techniques depend an the use of simple terms for indexing both request and document texts; an term weighting exploiting statistical information about term occurrences; an scoring for request-document matching, using these weights, to obtain a ranked search output; and an relevance feedback to modify request weights or term sets in iterative searching. The normal implementation is via an inverted file organisation using a term list with linked document identifiers, plus counting data, and pointers to the actual texts. The user's request can be a word list, phrases, sentences or extended text.
  3. Hider, P.: ¬The search value added by professional indexing to a bibliographic database (2017) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 3868) [ClassicSimilarity], result of:
          0.03354964 = score(doc=3868,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 3868, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3868)
      0.33333334 = coord(1/3)