Search (4 results, page 1 of 1)

  • × year_i:[2000 TO 2010}
  • × author_ss:"Croft, W.B."
  1. Croft, W.B.: Combining approaches to information retrieval (2000) 0.07
    0.066634305 = product of:
      0.09995145 = sum of:
        0.056935627 = weight(_text_:search in 6862) [ClassicSimilarity], result of:
          0.056935627 = score(doc=6862,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 6862, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=6862)
        0.043015826 = product of:
          0.08603165 = sum of:
            0.08603165 = weight(_text_:engines in 6862) [ClassicSimilarity], result of:
              0.08603165 = score(doc=6862,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.33681408 = fieldWeight in 6862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6862)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The combination of different text representations and search strategies has become a standard technique for improving the effectiveness of information retrieval. Combination, for example, has been studied extensively in the TREC evaluations and is the basis of the "meta-search" engines used on the Web. This paper examines the development of this technique, including both experimental results and the retrieval models that have been proposed as formal frameworks for combination. We show that combining approaches for information retrieval can be modeled as combining the outputs of multiple classifiers based on one or more representations, and that this simple model can provide explanations for many of the experimental results. We also show that this view of combination is very similar to the inference net model, and that a new approach to retrieval based on language models supports combination and can be integrated with the inference net model
  2. Luk, R.W.P.; Leong, H.V.; Dillon, T.S.; Chan, A.T.S.; Croft, W.B.; Allen, J.: ¬A survey in indexing and searching XML documents (2002) 0.04
    0.035505608 = product of:
      0.10651682 = sum of:
        0.10651682 = weight(_text_:search in 460) [ClassicSimilarity], result of:
          0.10651682 = score(doc=460,freq=14.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.6095997 = fieldWeight in 460, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=460)
      0.33333334 = coord(1/3)
    
    Abstract
    XML holds the promise to yield (1) a more precise search by providing additional information in the elements, (2) a better integrated search of documents from heterogeneous sources, (3) a powerful search paradigm using structural as well as content specifications, and (4) data and information exchange to share resources and to support cooperative search. We survey several indexing techniques for XML documents, grouping them into flatfile, semistructured, and structured indexing paradigms. Searching techniques and supporting techniques for searching are reviewed, including full text search and multistage search. Because searching XML documents can be very flexible, various search result presentations are discussed, as well as database and information retrieval system integration and XML query languages. We also survey various retrieval models, examining how they would be used or extended for retrieving XML documents. To conclude the article, we discuss various open issues that XML poses with respect to information retrieval and database research.
  3. Xu, J.; Croft, W.B.: Topic-based language models for distributed retrieval (2000) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 38) [ClassicSimilarity], result of:
          0.04025957 = score(doc=38,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 38, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=38)
      0.33333334 = coord(1/3)
    
    Abstract
    Effective retrieval in a distributed environment is an important but difficult problem. Lack of effectiveness appears to have two major causes. First, existing collection selection algorithms do not work well on heterogeneous collections. Second, relevant documents are scattered over many collections and searching a few collections misses many relevant documents. We propose a topic-oriented approach to distributed retrieval. With this approach, we structure the document set of a distributed retrieval environment around a set of topics. Retrieval for a query involves first selecting the right topics for the query and then dispatching the search process to collections that contain such topics. The content of a topic is characterized by a language model. In environments where the labeling of documents by topics is unavailable, document clustering is employed for topic identification. Based on these ideas, three methods are proposed to suit different environments. We show that all three methods improve effectiveness of distributed retrieval
  4. Murdock, V.; Kelly, D.; Croft, W.B.; Belkin, N.J.; Yuan, X.: Identifying and improving retrieval for procedural questions (2007) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 902) [ClassicSimilarity], result of:
          0.04025957 = score(doc=902,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=902)
      0.33333334 = coord(1/3)
    
    Abstract
    People use questions to elicit information from other people in their everyday lives and yet the most common method of obtaining information from a search engine is by posing keywords. There has been research that suggests users are better at expressing their information needs in natural language, however the vast majority of work to improve document retrieval has focused on queries posed as sets of keywords or Boolean queries. This paper focuses on improving document retrieval for the subset of natural language questions asking about how something is done. We classify questions as asking either for a description of a process or asking for a statement of fact, with better than 90% accuracy. Further we identify non-content features of documents relevant to questions asking about a process. Finally we demonstrate that we can use these features to significantly improve the precision of document retrieval results for questions asking about a process. Our approach, based on exploiting the structure of documents, shows a significant improvement in precision at rank one for questions asking about how something is done.