Search (12 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Data Mining"
  1. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.13
    0.12528598 = product of:
      0.18792897 = sum of:
        0.08217951 = weight(_text_:search in 1605) [ClassicSimilarity], result of:
          0.08217951 = score(doc=1605,freq=12.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.47031635 = fieldWeight in 1605, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.10574947 = sum of:
          0.07169304 = weight(_text_:engines in 1605) [ClassicSimilarity], result of:
            0.07169304 = score(doc=1605,freq=2.0), product of:
              0.25542772 = queryWeight, product of:
                5.080822 = idf(docFreq=746, maxDocs=44218)
                0.05027291 = queryNorm
              0.2806784 = fieldWeight in 1605, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.080822 = idf(docFreq=746, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1605)
          0.03405643 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
            0.03405643 = score(doc=1605,freq=2.0), product of:
              0.17604718 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05027291 = queryNorm
              0.19345059 = fieldWeight in 1605, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1605)
      0.6666667 = coord(2/3)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  2. Berry, M.W.; Esau, R.; Kiefer, B.: ¬The use of text mining techniques in electronic discovery for legal matters (2012) 0.08
    0.0785128 = product of:
      0.1177692 = sum of:
        0.056935627 = weight(_text_:search in 91) [ClassicSimilarity], result of:
          0.056935627 = score(doc=91,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 91, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=91)
        0.060833566 = product of:
          0.12166713 = sum of:
            0.12166713 = weight(_text_:engines in 91) [ClassicSimilarity], result of:
              0.12166713 = score(doc=91,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.47632706 = fieldWeight in 91, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=91)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Vgl.: http://www.igi-global.com/book/next-generation-search-engines/64425.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  3. Biskri, I.; Rompré, L.: Using association rules for query reformulation (2012) 0.08
    0.0785128 = product of:
      0.1177692 = sum of:
        0.056935627 = weight(_text_:search in 92) [ClassicSimilarity], result of:
          0.056935627 = score(doc=92,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 92, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=92)
        0.060833566 = product of:
          0.12166713 = sum of:
            0.12166713 = weight(_text_:engines in 92) [ClassicSimilarity], result of:
              0.12166713 = score(doc=92,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.47632706 = fieldWeight in 92, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=92)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Vgl.: http://www.igi-global.com/book/next-generation-search-engines/64430.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  4. Huvila, I.: Mining qualitative data on human information behaviour from the Web (2010) 0.06
    0.06476976 = product of:
      0.09715463 = sum of:
        0.0469695 = weight(_text_:search in 4676) [ClassicSimilarity], result of:
          0.0469695 = score(doc=4676,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2688082 = fieldWeight in 4676, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4676)
        0.05018513 = product of:
          0.10037026 = sum of:
            0.10037026 = weight(_text_:engines in 4676) [ClassicSimilarity], result of:
              0.10037026 = score(doc=4676,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39294976 = fieldWeight in 4676, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4676)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper discusses an approach of collecting qualitative data on human information behaviour that is based on mining web data using search engines. The approach is technically the same that has been used for some time in webometric research to make statistical inferences on web data, but the present paper shows how the same tools and data collecting methods can be used to gather data for qualitative data analysis on human information behaviour.
  5. Sarnikar, S.; Zhang, Z.; Zhao, J.L.: Query-performance prediction for effective query routing in domain-specific repositories (2014) 0.06
    0.05551693 = product of:
      0.08327539 = sum of:
        0.04025957 = weight(_text_:search in 1326) [ClassicSimilarity], result of:
          0.04025957 = score(doc=1326,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 1326, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1326)
        0.043015826 = product of:
          0.08603165 = sum of:
            0.08603165 = weight(_text_:engines in 1326) [ClassicSimilarity], result of:
              0.08603165 = score(doc=1326,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.33681408 = fieldWeight in 1326, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1326)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The effective use of corporate memory is becoming increasingly important because every aspect of e-business requires access to information repositories. Unfortunately, less-than-satisfying effectiveness in state-of-the-art information-retrieval techniques is well known, even for some of the best search engines such as Google. In this study, the authors resolve this retrieval ineffectiveness problem by developing a new framework for predicting query performance, which is the first step toward better retrieval effectiveness. Specifically, they examine the relationship between query performance and query context. A query context consists of the query itself, the document collection, and the interaction between the two. The authors first analyze the characteristics of query context and develop various features for predicting query performance. Then, they propose a context-sensitive model for predicting query performance based on the characteristics of the query and the document collection. Finally, they validate this model with respect to five real-world collections of documents and demonstrate its utility in routing queries to the correct repository with high accuracy.
  6. Berendt, B.; Krause, B.; Kolbe-Nusser, S.: Intelligent scientific authoring tools : interactive data mining for constructive uses of citation networks (2010) 0.02
    0.023243874 = product of:
      0.06973162 = sum of:
        0.06973162 = weight(_text_:search in 4226) [ClassicSimilarity], result of:
          0.06973162 = score(doc=4226,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.39907667 = fieldWeight in 4226, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4226)
      0.33333334 = coord(1/3)
    
    Abstract
    Many powerful methods and tools exist for extracting meaning from scientific publications, their texts, and their citation links. However, existing proposals often neglect a fundamental aspect of learning: that understanding and learning require an active and constructive exploration of a domain. In this paper, we describe a new method and a tool that use data mining and interactivity to turn the typical search and retrieve dialogue, in which the user asks questions and a system gives answers, into a dialogue that also involves sense-making, in which the user has to become active by constructing a bibliography and a domain model of the search term(s). This model starts from an automatically generated and annotated clustering solution that is iteratively modified by users. The tool is part of an integrated authoring system covering all phases from search through reading and sense-making to writing. Two evaluation studies demonstrate the usability of this interactive and constructive approach, and they show that clusters and groups represent identifiable sub-topics.
  7. Chen, Y.-L.; Liu, Y.-H.; Ho, W.-L.: ¬A text mining approach to assist the general public in the retrieval of legal documents (2013) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 521) [ClassicSimilarity], result of:
          0.04025957 = score(doc=521,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=521)
      0.33333334 = coord(1/3)
    
    Abstract
    Applying text mining techniques to legal issues has been an emerging research topic in recent years. Although some previous studies focused on assisting professionals in the retrieval of related legal documents, they did not take into account the general public and their difficulty in describing legal problems in professional legal terms. Because this problem has not been addressed by previous research, this study aims to design a text-mining-based method that allows the general public to use everyday vocabulary to search for and retrieve criminal judgments. The experimental results indicate that our method can help the general public, who are not familiar with professional legal terms, to acquire relevant criminal judgments more accurately and effectively.
  8. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.01
    0.012652363 = product of:
      0.037957087 = sum of:
        0.037957087 = weight(_text_:search in 354) [ClassicSimilarity], result of:
          0.037957087 = score(doc=354,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.21722981 = fieldWeight in 354, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.33333334 = coord(1/3)
    
    Abstract
    Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
    Content
    Inhalt: 1. Introduction 2. Association Rules and Sequential Patterns 3. Supervised Learning 4. Unsupervised Learning 5. Partially Supervised Learning 6. Information Retrieval and Web Search 7. Social Network Analysis 8. Web Crawling 9. Structured Data Extraction: Wrapper Generation 10. Information Integration
  9. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 4019) [ClassicSimilarity], result of:
          0.03354964 = score(doc=4019,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 4019, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4019)
      0.33333334 = coord(1/3)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  10. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.03405643 = score(doc=668,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2013 19:43:01
  11. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.03405643 = score(doc=5011,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    7. 3.2019 16:32:22
  12. Jäger, L.: Von Big Data zu Big Brother (2018) 0.00
    0.0045408574 = product of:
      0.013622572 = sum of:
        0.013622572 = product of:
          0.027245143 = sum of:
            0.027245143 = weight(_text_:22 in 5234) [ClassicSimilarity], result of:
              0.027245143 = score(doc=5234,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.15476047 = fieldWeight in 5234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5234)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2018 11:33:49