Search (6 results, page 1 of 1)

  • × theme_ss:"Formale Begriffsanalyse"
  1. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.06
    0.05538437 = product of:
      0.11076874 = sum of:
        0.09637688 = weight(_text_:sites in 2470) [ClassicSimilarity], result of:
          0.09637688 = score(doc=2470,freq=6.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.4001576 = fieldWeight in 2470, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.03125 = fieldNorm(doc=2470)
        0.014391863 = product of:
          0.028783726 = sum of:
            0.028783726 = weight(_text_:design in 2470) [ClassicSimilarity], result of:
              0.028783726 = score(doc=2470,freq=2.0), product of:
                0.17322445 = queryWeight, product of:
                  3.7598698 = idf(docFreq=2798, maxDocs=44218)
                  0.046071928 = queryNorm
                0.16616434 = fieldWeight in 2470, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7598698 = idf(docFreq=2798, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2470)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The writers show that a faceted navigation structure makes web sites easier to use. They begin by analyzing the web sites of three library and information science faculties, and seeing if the sites easily provide the answers to five specific questions, e.g., how the school ranks in national evaluations. (It is worth noting that the web site of the Faculty of Information Studies and the University of Toronto, where this bibliography is being written, would fail on four of the five questions.) Using examples from LIS web site content, they show how facets can be related and constructed, and use concept diagrams for illustration. They briefly discuss constraints necessary when joining facets: for example, enrolled students can be full- or part-time, but prospective and alumni students cannot. It should not be possible to construct terms such as "part-time alumni" (see Yannis Tzitzikas et al, below in Background). They conclude that a faceted approach is best for web site navigation, because it can clearly show where the user is in the site, what the related pages are, and how to get to them. There is a short discussion of user interfaces, and the diagrams in the paper will be of interest to anyone making a facet-based web site. This paper is clearly written, informative, and thought-provoking. Uta Priss's web site lists her other publications, many of which are related and some of which are online: http://www.upriss.org.uk/top/research.html.
  2. Negm, E.; AbdelRahman, S.; Bahgat, R.: PREFCA: a portal retrieval engine based on formal concept analysis (2017) 0.01
    0.013910804 = product of:
      0.055643216 = sum of:
        0.055643216 = weight(_text_:sites in 3291) [ClassicSimilarity], result of:
          0.055643216 = score(doc=3291,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.23103109 = fieldWeight in 3291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.03125 = fieldNorm(doc=3291)
      0.25 = coord(1/4)
    
    Abstract
    The web is a network of linked sites whereby each site either forms a physical portal or a standalone page. In the former case, the portal presents an access point to its embedded web pages that coherently present a specific topic. In the latter case, there are millions of standalone web pages, that are scattered throughout the web, having the same topic and could be conceptually linked together to form virtual portals. Search engines have been developed to help users in reaching the adequate pages in an efficient and effective manner. All the known current search engine techniques rely on the web page as the basic atomic search unit. They ignore the conceptual links, that reveal the implicit web related meanings, among the retrieved pages. However, building a semantic model for the whole portal may contain more semantic information than a model of scattered individual pages. In addition, user queries can be poor and contain imprecise terms that do not reflect the real user intention. Consequently, retrieving the standalone individual pages that are directly related to the query may not satisfy the user's need. In this paper, we propose PREFCA, a Portal Retrieval Engine based on Formal Concept Analysis that relies on the portal as the main search unit. PREFCA consists of three phases: First, the information extraction phase that is concerned with extracting portal's semantic data. Second, the formal concept analysis phase that utilizes formal concept analysis to discover the conceptual links among portal and attributes. Finally, the information retrieval phase where we propose a portal ranking method to retrieve ranked pairs of portals and embedded pages. Additionally, we apply the network analysis rules to output some portal characteristics. We evaluated PREFCA using two data sets, namely the Forum for Information Retrieval Evaluation 2010 and ClueWeb09 (category B) test data, for physical and virtual portals respectively. PREFCA proves higher F-measure accuracy, better Mean Average Precision ranking and comparable network analysis and efficiency results than other search engine approaches, namely Term Frequency Inverse Document Frequency (TF-IDF), Latent Semantic Analysis (LSA), and BM25 techniques. As well, it gains high Mean Average Precision in comparison with learning to rank techniques. Moreover, PREFCA also gains better reach time than Carrot as a well-known topic-based search engine.
  3. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen : Ein Beitrag zur Restrukturierung der mathematischen Logik (1998) 0.01
    0.007802638 = product of:
      0.031210553 = sum of:
        0.031210553 = product of:
          0.062421106 = sum of:
            0.062421106 = weight(_text_:22 in 3142) [ClassicSimilarity], result of:
              0.062421106 = score(doc=3142,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.38690117 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26. 2.2008 15:58:22
  4. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.01
    0.0062421104 = product of:
      0.024968442 = sum of:
        0.024968442 = product of:
          0.049936883 = sum of:
            0.049936883 = weight(_text_:22 in 1901) [ClassicSimilarity], result of:
              0.049936883 = score(doc=1901,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.30952093 = fieldWeight in 1901, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1901)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization. 22(1995) no.2, S.78-81
  5. Priss, U.: Faceted information representation (2000) 0.01
    0.0054618465 = product of:
      0.021847386 = sum of:
        0.021847386 = product of:
          0.04369477 = sum of:
            0.04369477 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
              0.04369477 = score(doc=5095,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.2708308 = fieldWeight in 5095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5095)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 17:47:06
  6. Priss, U.: Faceted knowledge representation (1999) 0.01
    0.0054618465 = product of:
      0.021847386 = sum of:
        0.021847386 = product of:
          0.04369477 = sum of:
            0.04369477 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.04369477 = score(doc=2654,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 17:30:31