Search (58 results, page 1 of 3)

  • × theme_ss:"Literaturübersicht"
  1. Weiss, A.K.; Carstens, T.V.: ¬The year's work in cataloging, 1999 (2001) 0.06
    0.059611507 = product of:
      0.11922301 = sum of:
        0.09737563 = weight(_text_:sites in 6084) [ClassicSimilarity], result of:
          0.09737563 = score(doc=6084,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.40430441 = fieldWeight in 6084, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6084)
        0.021847386 = product of:
          0.04369477 = sum of:
            0.04369477 = weight(_text_:22 in 6084) [ClassicSimilarity], result of:
              0.04369477 = score(doc=6084,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.2708308 = fieldWeight in 6084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6084)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The challenge of cataloging Web sites and electronic resources was the most important issue facing the cataloging world in the last year. This article reviews attempts to analyze and revise the cataloging code in view of the new electronic environment. The difficulties of applying traditional library cataloging standards to Web resources has led some to favor metadata as the best means of providing access to these materials. The appropriate education and training for library cataloging personnel remains crucial during this transitional period. Articles on user understanding of Library of Congress subject headings and on cataloging practice are also reviewed.
    Date
    10. 9.2000 17:38:22
  2. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.05
    0.05050312 = product of:
      0.10100624 = sum of:
        0.092011325 = weight(_text_:sites in 2467) [ClassicSimilarity], result of:
          0.092011325 = score(doc=2467,freq=14.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.38203177 = fieldWeight in 2467, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.008994915 = product of:
          0.01798983 = sum of:
            0.01798983 = weight(_text_:design in 2467) [ClassicSimilarity], result of:
              0.01798983 = score(doc=2467,freq=2.0), product of:
                0.17322445 = queryWeight, product of:
                  3.7598698 = idf(docFreq=2798, maxDocs=44218)
                  0.046071928 = queryNorm
                0.10385271 = fieldWeight in 2467, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7598698 = idf(docFreq=2798, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  3. Zendulkova, D.: Bibliografia CDS/ISIS (1997) 0.03
    0.034777008 = product of:
      0.13910803 = sum of:
        0.13910803 = weight(_text_:sites in 343) [ClassicSimilarity], result of:
          0.13910803 = score(doc=343,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.5775777 = fieldWeight in 343, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.078125 = fieldNorm(doc=343)
      0.25 = coord(1/4)
    
    Abstract
    Presents a bibliography of literature and Internet information devoted to the CDS/ISIS system. The Internet information is listed on the WWW server of the Wageningen Agricultural University Library (Holland), which is a Gopher server, with links to other Internet sites of interest
  4. Nielsen, M.L.: Thesaurus construction : key issues and selected readings (2004) 0.02
    0.023516573 = product of:
      0.09406629 = sum of:
        0.09406629 = sum of:
          0.050371516 = weight(_text_:design in 5006) [ClassicSimilarity], result of:
            0.050371516 = score(doc=5006,freq=2.0), product of:
              0.17322445 = queryWeight, product of:
                3.7598698 = idf(docFreq=2798, maxDocs=44218)
                0.046071928 = queryNorm
              0.29078758 = fieldWeight in 5006, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.7598698 = idf(docFreq=2798, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5006)
          0.04369477 = weight(_text_:22 in 5006) [ClassicSimilarity], result of:
            0.04369477 = score(doc=5006,freq=2.0), product of:
              0.16133605 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046071928 = queryNorm
              0.2708308 = fieldWeight in 5006, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5006)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this selected bibliography is to introduce issues and problems in relation to thesaurus construction and to present a set of readings that may be used in practical thesaurus design. The concept of thesaurus is discussed, the purpose of the thesaurus and how the concept has evolved over the years according to new IR technologies. Different approaches to thesaurus construction are introduced, and readings dealing with specific problems and developments in the collection, formation and organisation of thesaurus concepts and terms are presented. Primarily manual construction methods are discussed, but the bibliography also refers to research about techniques for automatic thesaurus construction.
    Date
    18. 5.2006 20:06:22
  5. Marsh, S.; Dibben, M.R.: ¬The role of trust in information science and technology (2002) 0.02
    0.020866206 = product of:
      0.08346482 = sum of:
        0.08346482 = weight(_text_:sites in 4289) [ClassicSimilarity], result of:
          0.08346482 = score(doc=4289,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.34654665 = fieldWeight in 4289, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046875 = fieldNorm(doc=4289)
      0.25 = coord(1/4)
    
    Abstract
    This chapter discusses the notion of trust as it relates to information science and technology, specifically user interfaces, autonomous agents, and information systems. We first present an in-depth discussion of the concept of trust in and of itself, moving an to applications and considerations of trust in relation to information technologies. We consider trust from a "soft" perspective-thus, although security concepts such as cryptography, virus protection, authentication, and so forth reinforce (or damage) the feelings of trust we may have in a system, they are not themselves constitutive of "trust." We discuss information technology from a human-centric viewpoint, where trust is a less well-structured but much more powerful phenomenon. With the proliferation of electronic commerce (e-commerce) and the World Wide Web (WWW, or Web), much has been made of the ability of individuals to explore the vast quantities of information available to them, to purchase goods (as diverse as vacations and cars) online, and to publish information an their personal Web sites.
  6. Davenport, E.; Hall, H.: Organizational Knowledge and Communities of Practice (2002) 0.02
    0.020866206 = product of:
      0.08346482 = sum of:
        0.08346482 = weight(_text_:sites in 4293) [ClassicSimilarity], result of:
          0.08346482 = score(doc=4293,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.34654665 = fieldWeight in 4293, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046875 = fieldNorm(doc=4293)
      0.25 = coord(1/4)
    
    Abstract
    A community of practice has recently been defined as "a flexible group of professionals, informally bound by common interests, who interact through interdependent tasks guided by a common purpose thereby embodying a store of common knowledge" (Jubert, 1999, p. 166). The association of communities of practice with the production of collective knowledge has long been recognized, and they have been objects of study for a number of decades in the context of professional communication, particularly communication in science (Abbott, 1988; Bazerman & Paradis, 1991). Recently, however, they have been invoked in the domain of organization studies as sites where people learn and share insights. If, as Stinchcombe suggests, an organization is "a set of stable social relations, dehberately created, with the explicit intention of continuously accomplishing some specific goals or purposes" (Stinchcombe, 1965, p. 142), where does this "flexible" and "embodied" source of knowledge fit? Can communities of practice be harnessed, engineered, and managed like other organizational groups, or does their strength lie in the fact that they operate outside the stable and persistent social relations that characterize the organization?
  7. Yu, N.: Readings & Web resources for faceted classification 0.02
    0.020866206 = product of:
      0.08346482 = sum of:
        0.08346482 = weight(_text_:sites in 4394) [ClassicSimilarity], result of:
          0.08346482 = score(doc=4394,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.34654665 = fieldWeight in 4394, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046875 = fieldNorm(doc=4394)
      0.25 = coord(1/4)
    
    Abstract
    The term "facet" has been used in various places, while in most cases it is just a buzz word to replace what is indeed "aspect" or "category". The references below either define and explain the original concept of facet or provide guidelines for building 'real' faceted search/browse. I was interested in faceted classification because it seems to be a natural and efficient way for organizing and browsing Web collections. However, to automatically generate facets and their isolates is extremely difficult since it involves concept extraction and concept grouping, both of which are difficult problems by themselves. And it is almost impossible to achieve mutually exclusive and jointly exhaustive 'true' facets without human judgment. Nowadays, faceted search/browse widely exists, implicitly or explicitly, on a majority of retail websites due to the multi-aspects nature of the data. However, it is still rarely seen on any digital library sites. (I could be wrong since I haven't kept myself updated with this field for a while.)
  8. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.02
    0.017388504 = product of:
      0.069554016 = sum of:
        0.069554016 = weight(_text_:sites in 4279) [ClassicSimilarity], result of:
          0.069554016 = score(doc=4279,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.28878886 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  9. Fox, E.A.; Urs, S.R.: Digital libraries (2002) 0.01
    0.013910804 = product of:
      0.055643216 = sum of:
        0.055643216 = weight(_text_:sites in 4299) [ClassicSimilarity], result of:
          0.055643216 = score(doc=4299,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.23103109 = fieldWeight in 4299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.03125 = fieldNorm(doc=4299)
      0.25 = coord(1/4)
    
    Abstract
    The emergence of digital libraries (DLs), at the interface of library and information science with computer and communication technologies, helped to expand significantly the literature in all of these areas during the late 1990s. The pace of development is reflected by the number of special issues of major journals in information science and computer science, and the increasing number of workshops and conferences an digital libraries. For example, starting in 1995, the Communications of the ACM has devoted three special issues to the topic (Fox, Akscyn, Furuta, & Leggett, 1995; Fox & Marchionini, 1998, 2001). The Journal of the American Society for Information Science devoted two issues to digital libraries (H. Chen, 2000; Fox & Lunin, 1993); Information Processing & Management and the Journal of Visual Communication and Image Representation each had one special issue (Chen & Fox, 1996; Marchionini & Fox, 1999). The domain of digital libraries, though still evolving, has matured over the last decade, as demonstrated by coverage through D-Lib (http://www.dlib.org), the International Journal an Digital Libraries (http://link.springer.de/link/service/journals/00799), and two overview works (W Y Arms, 2000; Lesk, 1997; both of which have also served as textbooks). Sun Microsystems published a small book to guide those planning a digital library (Noerr, 2000), and IBM has been developing commercial products for digital libraries since 1994 (IBM, 2000). A number of Web sites have extensive sets of pointers to information an DLs (D-Lib Forum, 2001; Fox, 1998a; Habing, 1998; Hein, 2000; Schwartz, 2001a, 2001b). Further, the field has attracted the attention of diverse academics, research groups, and practitionersmany of whom have attended tutorials, workshops, or conferences, e.g., the Joint Conference an Digital Libraries, which is a sequel to a separate series run by ACM and IEEE-CS. Therefore, it is timely that ARIST publishes this first review focusing specifically an digital libraries. There has been no ARIST chapter to date directly dealing with the area of DLs, though some related domains have been covered-particularly: information retrieval, user interfaces (Marchionini & Komlodi, 1998), social informatics of DLs (Bishop & Star, 1996), and scholarly communication (see Borgman and Furner's chapter in this volume). This chapter provides an overview of the diverse aspects and dimensions of DL research, practice, and literature, identifying trends and delineating research directions.
  10. Marchionini, G.; Komlodi, A.: Design of interfaces for information seeking (1999) 0.01
    0.012592879 = product of:
      0.050371516 = sum of:
        0.050371516 = product of:
          0.10074303 = sum of:
            0.10074303 = weight(_text_:design in 4687) [ClassicSimilarity], result of:
              0.10074303 = score(doc=4687,freq=2.0), product of:
                0.17322445 = queryWeight, product of:
                  3.7598698 = idf(docFreq=2798, maxDocs=44218)
                  0.046071928 = queryNorm
                0.58157516 = fieldWeight in 4687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7598698 = idf(docFreq=2798, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4687)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  11. Enser, P.G.B.: Visual image retrieval (2008) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 3281) [ClassicSimilarity], result of:
              0.09987377 = score(doc=3281,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2012 13:01:26
  12. Morris, S.A.: Mapping research specialties (2008) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 3962) [ClassicSimilarity], result of:
              0.09987377 = score(doc=3962,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 3962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3962)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 9:30:22
  13. Fallis, D.: Social epistemology and information science (2006) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 4368) [ClassicSimilarity], result of:
              0.09987377 = score(doc=4368,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 4368, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4368)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 19:22:28
  14. Nicolaisen, J.: Citation analysis (2007) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.09987377 = score(doc=6091,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    13. 7.2008 19:53:22
  15. Metz, A.: Community service : a bibliography (1996) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 5341) [ClassicSimilarity], result of:
              0.09987377 = score(doc=5341,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 5341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=5341)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17.10.1996 14:22:33
  16. Belkin, N.J.; Croft, W.B.: Retrieval techniques (1987) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 334) [ClassicSimilarity], result of:
              0.09987377 = score(doc=334,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 334, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=334)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Annual review of information science and technology. 22(1987), S.109-145
  17. Smith, L.C.: Artificial intelligence and information retrieval (1987) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 335) [ClassicSimilarity], result of:
              0.09987377 = score(doc=335,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 335, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=335)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Annual review of information science and technology. 22(1987), S.41-77
  18. Warner, A.J.: Natural language processing (1987) 0.01
    0.012484221 = product of:
      0.049936883 = sum of:
        0.049936883 = product of:
          0.09987377 = sum of:
            0.09987377 = weight(_text_:22 in 337) [ClassicSimilarity], result of:
              0.09987377 = score(doc=337,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.61904186 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Annual review of information science and technology. 22(1987), S.79-108
  19. Rasmussen, E.M.: Indexing and retrieval for the Web (2002) 0.01
    0.012171954 = product of:
      0.048687816 = sum of:
        0.048687816 = weight(_text_:sites in 4285) [ClassicSimilarity], result of:
          0.048687816 = score(doc=4285,freq=2.0), product of:
            0.2408473 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.046071928 = queryNorm
            0.20215221 = fieldWeight in 4285, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4285)
      0.25 = coord(1/4)
    
    Abstract
    Techniques for automated indexing and information retrieval (IR) have been developed, tested, and refined over the past 40 years, and are well documented (see, for example, Agosti & Smeaton, 1996; BaezaYates & Ribeiro-Neto, 1999a; Frakes & Baeza-Yates, 1992; Korfhage, 1997; Salton, 1989; Witten, Moffat, & Bell, 1999). With the introduction of the Web, and the capability to index and retrieve via search engines, these techniques have been extended to a new environment. They have been adopted, altered, and in some Gases extended to include new methods. "In short, search engines are indispensable for searching the Web, they employ a variety of relatively advanced IR techniques, and there are some peculiar aspects of search engines that make searching the Web different than more conventional information retrieval" (Gordon & Pathak, 1999, p. 145). The environment for information retrieval an the World Wide Web differs from that of "conventional" information retrieval in a number of fundamental ways. The collection is very large and changes continuously, with pages being added, deleted, and altered. Wide variability between the size, structure, focus, quality, and usefulness of documents makes Web documents much more heterogeneous than a typical electronic document collection. The wide variety of document types includes images, video, audio, and scripts, as well as many different document languages. Duplication of documents and sites is common. Documents are interconnected through networks of hyperlinks. Because of the size and dynamic nature of the Web, preprocessing all documents requires considerable resources and is often not feasible, certainly not an the frequent basis required to ensure currency. Query length is usually much shorter than in other environments-only a few words-and user behavior differs from that in other environments. These differences make the Web a novel environment for information retrieval (Baeza-Yates & Ribeiro-Neto, 1999b; Bharat & Henzinger, 1998; Huang, 2000).
  20. Grudin, J.: Human-computer interaction (2011) 0.01
    0.010923693 = product of:
      0.04369477 = sum of:
        0.04369477 = product of:
          0.08738954 = sum of:
            0.08738954 = weight(_text_:22 in 1601) [ClassicSimilarity], result of:
              0.08738954 = score(doc=1601,freq=2.0), product of:
                0.16133605 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046071928 = queryNorm
                0.5416616 = fieldWeight in 1601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1601)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    27.12.2014 18:54:22

Years

Languages

  • e 57
  • ru 1
  • More… Less…

Types

  • a 54
  • b 13
  • el 3
  • m 1
  • r 1
  • More… Less…