Search (2 results, page 1 of 1)

  • × author_ss:"Jiang, Y."
  • × year_i:[2020 TO 2030}
  1. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.05
    0.048165213 = product of:
      0.07224782 = sum of:
        0.055053383 = weight(_text_:wide in 1012) [ClassicSimilarity], result of:
          0.055053383 = score(doc=1012,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 1012, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1012)
        0.017194435 = product of:
          0.03438887 = sum of:
            0.03438887 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
              0.03438887 = score(doc=1012,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.19345059 = fieldWeight in 1012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the wide application of keyphrases in many Information Retrieval (IR) and Natural Language Processing (NLP) tasks, automatic keyphrase prediction has been emerging. However, these statistically important phrases are contributing increasingly less to the related tasks because the end-to-end learning mechanism enables models to learn the important semantic information of the text directly. Similarly, keyphrases are of little help for readers to quickly grasp the paper's main idea because the relationship between the keyphrase and the paper is not explicit to readers. Therefore, we propose to generate keyphrases with specific functions for readers to bridge the semantic gap between them and the information producers, and verify the effectiveness of the keyphrase function for assisting users' comprehension with a user experiment. A controllable keyphrase generation framework (the CKPG) that uses the keyphrase function as a control code to generate categorized keyphrases is proposed and implemented based on Transformer, BART, and T5, respectively. For the Computer Science domain, the Macro-avgs of , , and on the Paper with Code dataset are up to 0.680, 0.535, and 0.558, respectively. Our experimental results indicate the effectiveness of the CKPG models.
    Date
    22. 6.2023 14:55:20
  2. Sun, J.; Zhu, M.; Jiang, Y.; Liu, Y.; Wu, L.L.: Hierarchical attention model for personalized tag recommendation : peer effects on information value perception (2021) 0.00
    0.004977905 = product of:
      0.014933716 = sum of:
        0.014933716 = product of:
          0.029867431 = sum of:
            0.029867431 = weight(_text_:web in 98) [ClassicSimilarity], result of:
              0.029867431 = score(doc=98,freq=2.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.18028519 = fieldWeight in 98, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=98)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    With the development of Web-based social networks, many personalized tag recommendation approaches based on multi-information have been proposed. Due to the differences in users' preferences, different users care about different kinds of information. In the meantime, different elements within each kind of information are differentially informative for user tagging behaviors. In this context, how to effectively integrate different elements and different information separately becomes a key part of tag recommendation. However, the existing methods ignore this key part. In order to address this problem, we propose a deep neural network for tag recommendation. Specifically, we model two important attentive aspects with a hierarchical attention model. For different user-item pairs, the bottom layered attention network models the influence of different elements on the features representation of the information while the top layered attention network models the attentive scores of different information. To verify the effectiveness of the proposed method, we conduct extensive experiments on two real-world data sets. The results show that using attention network and different kinds of information can significantly improve the performance of the recommendation model, and verify the effectiveness and superiority of our proposed model.

Authors