Search (31 results, page 1 of 2)

  • × type_ss:"n"
  1. SKOS Simple Knowledge Organization System Primer (2009) 0.06
    0.055325992 = product of:
      0.110651985 = sum of:
        0.055176124 = weight(_text_:wide in 4795) [ClassicSimilarity], result of:
          0.055176124 = score(doc=4795,freq=2.0), product of:
            0.18785246 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042397358 = queryNorm
            0.29372054 = fieldWeight in 4795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
        0.042333104 = weight(_text_:web in 4795) [ClassicSimilarity], result of:
          0.042333104 = score(doc=4795,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3059541 = fieldWeight in 4795, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
        0.01314276 = product of:
          0.03942828 = sum of:
            0.03942828 = weight(_text_:system in 4795) [ClassicSimilarity], result of:
              0.03942828 = score(doc=4795,freq=4.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.29527056 = fieldWeight in 4795, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4795)
          0.33333334 = coord(1/3)
      0.5 = coord(3/6)
    
    Abstract
    SKOS (Simple Knowledge Organisation System) provides a model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, and other types of controlled vocabulary. As an application of the Resource Description Framework (RDF) SKOS allows concepts to be documented, linked and merged with other data, while still being composed, integrated and published on the World Wide Web. This document is an implementors guide for those who would like to represent their concept scheme using SKOS. In basic SKOS, conceptual resources (concepts) can be identified using URIs, labelled with strings in one or more natural languages, documented with various types of notes, semantically related to each other in informal hierarchies and association networks, and aggregated into distinct concept schemes. In advanced SKOS, conceptual resources can be mapped to conceptual resources in other schemes and grouped into labelled or ordered collections. Concept labels can also be related to each other. Finally, the SKOS vocabulary itself can be extended to suit the needs of particular communities of practice.
    Theme
    Semantic Web
  2. Bechhofer, S.; Harmelen, F. van; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference (2004) 0.05
    0.047487475 = product of:
      0.14246242 = sum of:
        0.06437215 = weight(_text_:wide in 4684) [ClassicSimilarity], result of:
          0.06437215 = score(doc=4684,freq=2.0), product of:
            0.18785246 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042397358 = queryNorm
            0.342674 = fieldWeight in 4684, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4684)
        0.078090265 = weight(_text_:web in 4684) [ClassicSimilarity], result of:
          0.078090265 = score(doc=4684,freq=10.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5643819 = fieldWeight in 4684, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4684)
      0.33333334 = coord(2/6)
    
    Abstract
    The Web Ontology Language OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web Ontology Language. This document contains a structured informal description of the full set of OWL language constructs and is meant to serve as a reference for OWL users who want to construct OWL ontologies.
    Theme
    Semantic Web
  3. OWL Web Ontology Language Guide (2004) 0.04
    0.035694227 = product of:
      0.10708268 = sum of:
        0.045980107 = weight(_text_:wide in 4687) [ClassicSimilarity], result of:
          0.045980107 = score(doc=4687,freq=2.0), product of:
            0.18785246 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042397358 = queryNorm
            0.24476713 = fieldWeight in 4687, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4687)
        0.06110257 = weight(_text_:web in 4687) [ClassicSimilarity], result of:
          0.06110257 = score(doc=4687,freq=12.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.4416067 = fieldWeight in 4687, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4687)
      0.33333334 = coord(2/6)
    
    Abstract
    The World Wide Web as it is currently constituted resembles a poorly mapped geography. Our insight into the documents and capabilities available are based on keyword searches, abetted by clever use of document connectivity and usage patterns. The sheer mass of this data is unmanageable without powerful tool support. In order to map this terrain more precisely, computational agents require machine-readable descriptions of the content and capabilities of Web accessible resources. These descriptions must be in addition to the human-readable versions of that information. The OWL Web Ontology Language is intended to provide a language that can be used to describe the classes and relations between them that are inherent in Web documents and applications. This document demonstrates the use of the OWL language to - formalize a domain by defining classes and properties of those classes, - define individuals and assert properties about them, and - reason about these classes and individuals to the degree permitted by the formal semantics of the OWL language. The sections are organized to present an incremental definition of a set of classes, properties and individuals, beginning with the fundamentals and proceeding to more complex language components.
    Theme
    Semantic Web
  4. OWL Web Ontology Language Test Cases (2004) 0.03
    0.03485468 = product of:
      0.10456404 = sum of:
        0.08924602 = weight(_text_:web in 4685) [ClassicSimilarity], result of:
          0.08924602 = score(doc=4685,freq=10.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.6450079 = fieldWeight in 4685, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4685)
        0.015318017 = product of:
          0.045954052 = sum of:
            0.045954052 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.045954052 = score(doc=4685,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This document contains and presents test cases for the Web Ontology Language (OWL) approved by the Web Ontology Working Group. Many of the test cases illustrate the correct usage of the Web Ontology Language (OWL), and the formal meaning of its constructs. Other test cases illustrate the resolution of issues considered by the Working Group. Conformance for OWL documents and OWL document checkers is specified.
    Date
    14. 8.2011 13:33:22
    Theme
    Semantic Web
  5. Pepper, S.; Moore, G.; TopicMaps.Org Authoring Group: XML Topic Maps (XTM) 1.0 : TopicMaps.Org Specification (2001) 0.03
    0.032503076 = product of:
      0.09750923 = sum of:
        0.055176124 = weight(_text_:wide in 1623) [ClassicSimilarity], result of:
          0.055176124 = score(doc=1623,freq=2.0), product of:
            0.18785246 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042397358 = queryNorm
            0.29372054 = fieldWeight in 1623, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1623)
        0.042333104 = weight(_text_:web in 1623) [ClassicSimilarity], result of:
          0.042333104 = score(doc=1623,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.3059541 = fieldWeight in 1623, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1623)
      0.33333334 = coord(2/6)
    
    Abstract
    This specification provides a model and grammar for representing the structure of information resources used to define topics, and the associations (relationships) between topics. Names, resources, and relationships are said to be characteristics of abstract subjects, which are called topics. Topics have their characteristics within scopes: i.e. the limited contexts within which the names and resources are regarded as their name, resource, and relationship characteristics. One or more interrelated documents employing this grammar is called a topic map.TopicMaps.Org is an independent consortium of parties developing the applicability of the topic map paradigm [ISO13250] to the World Wide Web by leveraging the XML family of specifications. This specification describes version 1.0 of XML Topic Maps (XTM) 1.0 [XTM], an abstract model and XML grammar for interchanging Web-based topic maps, written by the members of the TopicMaps.Org Authoring Group. More information on XTM and TopicMaps.Org is available at http://www.topicmaps.org/about.html. All versions of the XTM Specification are permanently licensed to the public, as provided by the Charter of TopicMaps.Org.
  6. Z39.58-1992: Common command language for online interactive information retrieval (1992) 0.03
    0.025368199 = product of:
      0.076104596 = sum of:
        0.060615707 = weight(_text_:retrieval in 4801) [ClassicSimilarity], result of:
          0.060615707 = score(doc=4801,freq=4.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.47264296 = fieldWeight in 4801, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=4801)
        0.015488892 = product of:
          0.046466675 = sum of:
            0.046466675 = weight(_text_:system in 4801) [ClassicSimilarity], result of:
              0.046466675 = score(doc=4801,freq=2.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.3479797 = fieldWeight in 4801, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4801)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Useful to system designers that want to specify a uniform command terminology, Z39.58-1992 describes nineteen non-proprietary command terms for use in online information retrieval systems. Defines the vocabulary, syntax, and operational meaning of the commands
  7. Z39.19-1993: Guidelines for the construction, format, and management of monolingual thesauri (1993) 0.02
    0.016535815 = product of:
      0.04960744 = sum of:
        0.034289423 = weight(_text_:retrieval in 4092) [ClassicSimilarity], result of:
          0.034289423 = score(doc=4092,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.26736724 = fieldWeight in 4092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4092)
        0.015318017 = product of:
          0.045954052 = sum of:
            0.045954052 = weight(_text_:22 in 4092) [ClassicSimilarity], result of:
              0.045954052 = score(doc=4092,freq=2.0), product of:
                0.14846832 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.042397358 = queryNorm
                0.30952093 = fieldWeight in 4092, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4092)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This 1993 edition is the authoritative guide constructing single-language thesauri, one of the most powerful tools for information retrieval. Written by experts, Z39.19 shows how to formulate descriptors, establish relationships among terms, and present the information in print and on a screen. Also included are thesaurus maintenance procedures and recommended features for thesaurus management systems
    Footnote
    Rez. in: Knowledge organization 22(1995) no.3/4, S.180-181 (M. Hudon)
  8. OWL Web Ontology Language Use Cases and Requirements (2004) 0.01
    0.01330401 = product of:
      0.07982406 = sum of:
        0.07982406 = weight(_text_:web in 4686) [ClassicSimilarity], result of:
          0.07982406 = score(doc=4686,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5769126 = fieldWeight in 4686, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4686)
      0.16666667 = coord(1/6)
    
    Abstract
    This document specifies usage scenarios, goals and requirements for a web ontology language. An ontology formally defines a common set of terms that are used to describe and represent a domain. Ontologies can be used by automated tools to power advanced services such as more accurate web search, intelligent software agents and knowledge management.
    Theme
    Semantic Web
  9. OWL 2 Web Ontology Language Document Overview (2009) 0.01
    0.013015045 = product of:
      0.078090265 = sum of:
        0.078090265 = weight(_text_:web in 3060) [ClassicSimilarity], result of:
          0.078090265 = score(doc=3060,freq=10.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.5643819 = fieldWeight in 3060, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3060)
      0.16666667 = coord(1/6)
    
    Abstract
    The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. This document serves as an introduction to OWL 2 and the various other OWL 2 documents. It describes the syntaxes for OWL 2, the different kinds of semantics, the available profiles (sub-languages), and the relationship between OWL 1 and OWL 2.
    Theme
    Semantic Web
  10. Z39.50: Information retrieval service and protocol : Information retrieval application service definition and protocol specification for open systems interaction (1992) 0.01
    0.012123141 = product of:
      0.07273885 = sum of:
        0.07273885 = weight(_text_:retrieval in 2889) [ClassicSimilarity], result of:
          0.07273885 = score(doc=2889,freq=4.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.5671716 = fieldWeight in 2889, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=2889)
      0.16666667 = coord(1/6)
    
  11. Z39.50: Information retrieval service and protocol : Information retrieval application service definition and protocol specification for open systems interaction (1995) 0.01
    0.012123141 = product of:
      0.07273885 = sum of:
        0.07273885 = weight(_text_:retrieval in 4367) [ClassicSimilarity], result of:
          0.07273885 = score(doc=4367,freq=4.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.5671716 = fieldWeight in 4367, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=4367)
      0.16666667 = coord(1/6)
    
  12. ISO 25964 Thesauri and interoperability with other vocabularies (2008) 0.01
    0.011774646 = product of:
      0.035323936 = sum of:
        0.028752556 = weight(_text_:retrieval in 1169) [ClassicSimilarity], result of:
          0.028752556 = score(doc=1169,freq=10.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.22419426 = fieldWeight in 1169, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1169)
        0.00657138 = product of:
          0.01971414 = sum of:
            0.01971414 = weight(_text_:system in 1169) [ClassicSimilarity], result of:
              0.01971414 = score(doc=1169,freq=4.0), product of:
                0.13353272 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.042397358 = queryNorm
                0.14763528 = fieldWeight in 1169, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1169)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    T.1: Today's thesauri are mostly electronic tools, having moved on from the paper-based era when thesaurus standards were first developed. They are built and maintained with the support of software and need to integrate with other software, such as search engines and content management systems. Whereas in the past thesauri were designed for information professionals trained in indexing and searching, today there is a demand for vocabularies that untrained users will find to be intuitive. ISO 25964 makes the transition needed for the world of electronic information management. However, part 1 retains the assumption that human intellect is usually involved in the selection of indexing terms and in the selection of search terms. If both the indexer and the searcher are guided to choose the same term for the same concept, then relevant documents will be retrieved. This is the main principle underlying thesaurus design, even though a thesaurus built for human users may also be applied in situations where computers make the choices. Efficient exchange of data is a vital component of thesaurus management and exploitation. Hence the inclusion in this standard of recommendations for exchange formats and protocols. Adoption of these will facilitate interoperability between thesaurus management systems and the other computer applications, such as indexing and retrieval systems, that will utilize the data. Thesauri are typically used in post-coordinate retrieval systems, but may also be applied to hierarchical directories, pre-coordinate indexes and classification systems. Increasingly, thesaurus applications need to mesh with others, such as automatic categorization schemes, free-text search systems, etc. Part 2 of ISO 25964 describes additional types of structured vocabulary and gives recommendations to enable interoperation of the vocabularies at all stages of the information storage and retrieval process.
    T.2: The ability to identify and locate relevant information among vast collections and other resources is a major and pressing challenge today. Several different types of vocabulary are in use for this purpose. Some of the most widely used vocabularies were designed a hundred years ago and have been evolving steadily. A different generation of vocabularies is now emerging, designed to exploit the electronic media more effectively. A good understanding of the previous generation is still essential for effective access to collections indexed with them. An important object of ISO 25964 as a whole is to support data exchange and other forms of interoperability in circumstances in which more than one structured vocabulary is applied within one retrieval system or network. Sometimes one vocabulary has to be mapped to another, and it is important to understand both the potential and the limitations of such mappings. In other systems, a thesaurus is mapped to a classification scheme, or an ontology to a thesaurus. Comprehensive interoperability needs to cover the whole range of vocabulary types, whether young or old. Concepts in different vocabularies are related only in that they have the same or similar meaning. However, the meaning can be found in a number of different aspects within each particular type of structured vocabulary: - within terms or captions selected in different languages; - in the notation assigned indicating a place within a larger hierarchy; - in the definition, scope notes, history notes and other notes that explain the significance of that concept; and - in explicit relationships to other concepts or entities within the same vocabulary. In order to create mappings from one structured vocabulary to another it is first necessary to understand, within the context of each different type of structured vocabulary, the significance and relative importance of each of the different elements in defining the meaning of that particular concept. ISO 25964-1 describes the key characteristics of thesauri along with additional advice on best practice. ISO 25964-2 focuses on other types of vocabulary and does not attempt to cover all aspects of good practice. It concentrates on those aspects which need to be understood if one of the vocabularies is to work effectively alongside one or more of the others. Recognizing that a new standard cannot be applied to some existing vocabularies, this part of ISO 25964 provides informative description alongside the recommendations, the aim of which is to enable users and system developers to interpret and implement the existing vocabularies effectively. The remainder of ISO 25964-2 deals with the principles and practicalities of establishing mappings between vocabularies.
    Issue
    Pt.1: Thesauri for information retrieval - Pt.2: Interoperability with other vocabularies.
  13. Z39.50-1988: Information retrieval service definition and protocol specification for library applications (1988) 0.01
    0.011429808 = product of:
      0.06857885 = sum of:
        0.06857885 = weight(_text_:retrieval in 8730) [ClassicSimilarity], result of:
          0.06857885 = score(doc=8730,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.5347345 = fieldWeight in 8730, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=8730)
      0.16666667 = coord(1/6)
    
  14. Z39.4-199X: Indexes and related information retrieval devices (1993) 0.01
    0.010001082 = product of:
      0.06000649 = sum of:
        0.06000649 = weight(_text_:retrieval in 8518) [ClassicSimilarity], result of:
          0.06000649 = score(doc=8518,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.46789268 = fieldWeight in 8518, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=8518)
      0.16666667 = coord(1/6)
    
  15. Z39.50-1992: Information retrieval service definition and protocol (1992) 0.01
    0.010001082 = product of:
      0.06000649 = sum of:
        0.06000649 = weight(_text_:retrieval in 8731) [ClassicSimilarity], result of:
          0.06000649 = score(doc=8731,freq=2.0), product of:
            0.12824841 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.042397358 = queryNorm
            0.46789268 = fieldWeight in 8731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=8731)
      0.16666667 = coord(1/6)
    
  16. Köstlbacher, A. (Übers.): OWL Web Ontology Language Überblick (2004) 0.01
    0.0099780075 = product of:
      0.059868045 = sum of:
        0.059868045 = weight(_text_:web in 4681) [ClassicSimilarity], result of:
          0.059868045 = score(doc=4681,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 4681, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
      0.16666667 = coord(1/6)
    
    Abstract
    Die OWL Web Ontology Language wurde entwickelt, um es Anwendungen zu ermöglichen den Inhalt von Informationen zu verarbeiten anstatt die Informationen dem Anwender nur zu präsentieren. OWL erleichtert durch zusätzliches Vokabular in Verbindung mit formaler Semantik stärkere Interpretationsmöglichkeiten von Web Inhalten als dies XML, RDF und RDFS ermöglichen. OWL besteht aus drei Untersprachen mit steigender Ausdrucksmächtigkeit: OWL Lite, OWL DL and OWL Full. Dieses Dokument wurde für Leser erstellt, die einen ersten Eindruck von den Möglichkeiten bekommen möchten, die OWL bietet. Es stellt eine Einführung in OWL anhand der Beschreibung der Merkmale der drei Untersprachen von OWL dar. Kenntnisse von RDF Schema sind hilfreich für das Verständnis, aber nicht unbedingt erforderlich. Nach der Lektüre dieses Dokuments können sich interessierte Leser für detailliertere Beschreibungen und ausführliche Beispiele der Merkmale von OWL dem OWL Guide zuwenden. Die normative formale Definition von OWL findet sich unter OWL Semantics and Abstract Syntax.
    Theme
    Semantic Web
  17. OWL Web Ontology Language Overview (2004) 0.01
    0.0099780075 = product of:
      0.059868045 = sum of:
        0.059868045 = weight(_text_:web in 4682) [ClassicSimilarity], result of:
          0.059868045 = score(doc=4682,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 4682, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4682)
      0.16666667 = coord(1/6)
    
    Abstract
    The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead of just presenting information to humans. OWL facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full. This document is written for readers who want a first impression of the capabilities of OWL. It provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL. Some knowledge of RDF Schema is useful for understanding this document, but not essential. After this document, interested readers may turn to the OWL Guide for more detailed descriptions and extensive examples on the features of OWL. The normative formal definition of OWL can be found in the OWL Semantics and Abstract Syntax.
    Theme
    Semantic Web
  18. OWL Web Ontology Language Semantics and Abstract Syntax (2004) 0.01
    0.0099780075 = product of:
      0.059868045 = sum of:
        0.059868045 = weight(_text_:web in 4683) [ClassicSimilarity], result of:
          0.059868045 = score(doc=4683,freq=8.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.43268442 = fieldWeight in 4683, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4683)
      0.16666667 = coord(1/6)
    
    Abstract
    This description of OWL, the Web Ontology Language being designed by the W3C Web Ontology Working Group, contains a high-level abstract syntax for both OWL DL and OWL Lite, sublanguages of OWL. A model-theoretic semantics is given to provide a formal meaning for OWL ontologies written in this abstract syntax. A model-theoretic semantics in the form of an extension to the RDF semantics is also given to provide a formal meaning for OWL ontologies as RDF graphs (OWL Full). A mapping from the abstract syntax to RDF graphs is given and the two model theories are shown to have the same consequences on OWL ontologies that can be written in the abstract syntax.
    Theme
    Semantic Web
  19. Hori, M.; Euzenat, J.; Patel-Schneider, P.F.: OWL Web Ontology Language XML Presentation Syntax (2003) 0.01
    0.009407356 = product of:
      0.05644414 = sum of:
        0.05644414 = weight(_text_:web in 4680) [ClassicSimilarity], result of:
          0.05644414 = score(doc=4680,freq=4.0), product of:
            0.13836423 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.042397358 = queryNorm
            0.4079388 = fieldWeight in 4680, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4680)
      0.16666667 = coord(1/6)
    
    Theme
    Semantic Web
  20. Le Boeuf, P.; Riva, P.; Zumer, M.: FRBR - Library Reference Model : draft for World-Wide Review (2016) 0.01
    0.009196021 = product of:
      0.055176124 = sum of:
        0.055176124 = weight(_text_:wide in 2881) [ClassicSimilarity], result of:
          0.055176124 = score(doc=2881,freq=2.0), product of:
            0.18785246 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.042397358 = queryNorm
            0.29372054 = fieldWeight in 2881, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=2881)
      0.16666667 = coord(1/6)