Search (11 results, page 1 of 1)

  • × author_ss:"Chowdhury, G.G."
  1. Chowdhury, G.G.: Natural language processing (2002) 0.07
    0.072387636 = product of:
      0.14477527 = sum of:
        0.057803504 = weight(_text_:wide in 4284) [ClassicSimilarity], result of:
          0.057803504 = score(doc=4284,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 4284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
        0.031359423 = weight(_text_:web in 4284) [ClassicSimilarity], result of:
          0.031359423 = score(doc=4284,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 4284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
        0.05561234 = weight(_text_:computer in 4284) [ClassicSimilarity], result of:
          0.05561234 = score(doc=4284,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.34261024 = fieldWeight in 4284, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
      0.5 = coord(3/6)
    
    Abstract
    Natural Language Processing (NLP) is an area of research and application that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. NLP researchers aim to gather knowledge an how human beings understand and use language so that appropriate tools and techniques can be developed to make computer systems understand and manipulate natural languages to perform desired tasks. The foundations of NLP lie in a number of disciplines, namely, computer and information sciences, linguistics, mathematics, electrical and electronic engineering, artificial intelligence and robotics, and psychology. Applications of NLP include a number of fields of study, such as machine translation, natural language text processing and summarization, user interfaces, multilingual and cross-language information retrieval (CLIR), speech recognition, artificial intelligence, and expert systems. One important application area that is relatively new and has not been covered in previous ARIST chapters an NLP relates to the proliferation of the World Wide Web and digital libraries.
  2. Chowdhury, G.G.: Information sources and searching on the World Wide Web (2001) 0.05
    0.04953496 = product of:
      0.14860488 = sum of:
        0.09633918 = weight(_text_:wide in 6136) [ClassicSimilarity], result of:
          0.09633918 = score(doc=6136,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.48953426 = fieldWeight in 6136, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.078125 = fieldNorm(doc=6136)
        0.052265707 = weight(_text_:web in 6136) [ClassicSimilarity], result of:
          0.052265707 = score(doc=6136,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.36057037 = fieldWeight in 6136, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=6136)
      0.33333334 = coord(2/6)
    
  3. Meyyappan, N.; Foo, F.; Chowdhury, G.G.: Design and evaluation of a task-based digital library for the academic community (2004) 0.03
    0.03237579 = product of:
      0.09712737 = sum of:
        0.057803504 = weight(_text_:wide in 4425) [ClassicSimilarity], result of:
          0.057803504 = score(doc=4425,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 4425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4425)
        0.039323866 = weight(_text_:computer in 4425) [ClassicSimilarity], result of:
          0.039323866 = score(doc=4425,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 4425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=4425)
      0.33333334 = coord(2/6)
    
    Abstract
    The paper discusses the design, development and evaluation of a task-based digital library, the Digital Work Environment (DWE), for the academic community of higher education institutions (HEI) with Nanyang Technological University, Singapore, as a test case. Three different information organisation approaches (alphabetical, subject category and task-based) were used to organise the wide range of heterogeneous information resources that were interfaced to DWE. A user evaluation study using a series of task scenarios was carried out to gauge the effectiveness and usefulness of DWE and these information organisation approaches. The time taken by respondents to identify and access the relevant information resources for individual tasks was also measured. The findings show that the task-based approach took the least time in identifying information resources. Regression analysis of information resource location time with gender, age, computer experience and digital resource experience of the participants are also reported.
  4. Chowdhury, G.G.; Chowdhury, S.: Introduction to digital libraries (2003) 0.02
    0.02461139 = product of:
      0.04922278 = sum of:
        0.009146499 = weight(_text_:web in 6119) [ClassicSimilarity], result of:
          0.009146499 = score(doc=6119,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.06309982 = fieldWeight in 6119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.013671875 = fieldNorm(doc=6119)
        0.025646493 = weight(_text_:computer in 6119) [ClassicSimilarity], result of:
          0.025646493 = score(doc=6119,freq=10.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.15800002 = fieldWeight in 6119, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.013671875 = fieldNorm(doc=6119)
        0.014429786 = product of:
          0.028859572 = sum of:
            0.028859572 = weight(_text_:programs in 6119) [ClassicSimilarity], result of:
              0.028859572 = score(doc=6119,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.11208451 = fieldWeight in 6119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.013671875 = fieldNorm(doc=6119)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Footnote
    Rez. in: JASIST 55(2004) no.2, S.178-179 (M.-Y. Kan): "In their latest book, Chowdhury and Chowdhury have written an introductory text an digital libraries, primarily targeting "students researching digital libraries as part of information and library science, as well as computer science, courses" (p. xiv). It is an ambitious work that surveys many of the broad topics in digital libraries (DL) while highlighting completed and ongoing DL research in many parts of the world. With the revamping of Library and Information Science (LIS) Curriculums to focus an information technology, many LIS schools are now teaching DL topics either as an independent course or as part of an existing one. Instructors of these courses have in many cases used supplementary texts and compeed readers from journals and conference materials, possibly because they feel that a suitable textbook has yet to be written. A solid, principal textbook for digital libraries is sorely needed to provide a critical, evaluative synthesis of DL literature. It is with this in mind that I believe Introduction to Digital Libraries was written. An introductory text an any Cross-disciplinary topic is bound to have conflicting limitations and expectations from its adherents who come from different backgrounds. This is the rase in the development of DL Curriculum, in which both LIS and computer science schools are actively involved. Compiling a useful secondary source in such Cross-disciplinary areas is challenging; it requires that jargon from each contributing field be carefully explained and respected, while providing thought-provoking material to broaden student perspectives. In my view, the book's breadth certainly encompasses the whole of what an introduction to DL needs, but it is hampered by a lack of focus from catering to such disparate needs. For example, LIS students will need to know which key aspects differentiate digital library metadata from traditional metadata while computer science students will need to learn the basics of vector spare and probabilistic information retrieval. However, the text does not give enough detail an either subject and thus even introductory students will need to go beyond the book and consult primary sources. In this respect, the book's 307 pages of content are too short to do justice to such a broad field of study.
    This book covers all of the primary areas in the DL Curriculum as suggested by T. Saracevic and M. Dalbello's (2001) and A. Spink and C. Cool's (1999) D-Lib articles an DL education. In fact, the book's coverage is quite broad; it includes a Superset of recommended topics, offering a chapter an professional issues (recommended in Spink and Cool) as well as three chapters devoted to DL research. The book comes with a comprehensive list of references and an index, allowing readers to easily locate a specific topic or research project of interest. Each chapter also begins with a short outline of the chapter. As an additional plus, the book is quite heavily Cross-referenced, allowing easy navigation across topics. The only drawback with regard to supplementary materials is that it Lacks a glossary that world be a helpful reference to students needing a reference guide to DL terminology. The book's organization is well thought out and each chapter stands independently of the others, facilitating instruction by parts. While not officially delineated into three parts, the book's fifteen chapters are logically organized as such. Chapters 2 and 3 form the first part, which surveys various DLs and DL research initiatives. The second and core part of the book examines the workings of a DL along various dimensions, from its design to its eventual implementation and deployment. The third part brings together extended topics that relate to a deployed DL: its preservation, evaluation, and relationship to the larger social content. Chapter 1 defines digital libraries and discusses the scope of the materials covered in the book. The authors posit that the meaning of digital library is best explained by its sample characteristics rather than by definition, noting that it has largely been shaped by the melding of the research and information professions. This reveals two primary facets of the DL: an "emphasis an digital content" coming from an engineering and computer science perspective as well as an "emphasis an services" coming from library and information professionals (pp. 4-5). The book's organization mirrors this dichotomy, focusing an the core aspects of content in the earlier chapters and retuming to the service perspective in later chapters.
    Chapter 2 examines the variety and breadth of DL implementations and collections through a well-balanced selection of 20 DLs. The authors make a useful classification of the various types of DLs into seven categories and give a brief synopsis of two or three examples from each category. These categories include historical, national, and university DLs, as well as DLs for special materials and research. Chapter 3 examines research efforts in digital libraries, concentrating an the three eLib initiatives in the UK and the two Digital Libraries Initiatives in the United States. The chapter also offers some details an joint research between the UK and the United States (the NSF/JISC jointly funded programs), Europe, Canada, Australia, and New Zealand. While both of these chapters do an admirable job of surveying the DL landscape, the breadth and variety of materials need to be encapsulated in a coherent summary that illustrates the commonality of their approaches and their key differences that have been driven by aspects of their collections and audience. Unfortunately, this summary aspect is lacking here and elsewhere in the book. Chapter 2 does an admirable job of DL selection that showcases the variety of existing DLs, but 1 feel that Chapter 3's selection of research projects could be improved. The chapter's emphasis is clearly an UK-based research, devoting nine pages to it compared to six for EU-funded projects. While this emphasis could be favorable for UK courses, it hampers the chances of the text's adoption in other courses internationally. Chapter 4 begins the core part of the book by examining the DL from a design perspective. As a well-designed DL encompasses various practical and theoretical considerations, the chapter introduces much of the concepts that are elaborated an in later chapters. The Kahn/Wilensky and Lagoze/Fielding architectures are summarized in bullet points, and specific aspects of these frameworks are elaborated on. These include the choice between a federated or centralized search architecture (referencing Virginia Tech's NDLTD and Waikato's Greenstone) and level of interoperability (discussing UNIMARC and metadata harvesting). Special attention is paid to hybrid library design, with references to UK projects. A useful summary of recommended standards for DL design concludes the chapter.
    Chapter 13 an DL evaluation merges criteria from traditional library evaluation with criteria from user interface design and information retrieval. Quantitative, macro-evaluation techniques are emphasized, and again, some DL evaluation projects and reports are illustrated. A very brief chapter an the role of librarians in the DL follows, emphasizing that traditional reference skills are paramount to the success of the digital librarian, but that he should also be savvy in Web page and user interface design. A final chapter an research trends in digital libraries seems a bit incoherent. It mentions many of the previous chapters' topics, and would possibly be better organized if written as summary sections and distributed among the other chapters. The book's breadth is quite expansive, touching an both fundamental and advanced topics necessary to a well-rounded DL education. As the book is thoroughly referenced to DL and DL-related research projects, it serves as a useful starting point for those interested in more in depth learning. However, this breadth is also a weakness. In my opinion, the sheer number of research projects and papers surveyed leaves the authors little space to critique and summarize key issues. Many of the case studies are presented as itemized lists and not used to exemplify specific points. I feel that an introductory text should exercise some editorial and evaluative rights to create structure and organization for the uninitiated. Case studies should be carefully Chosen to exemplify the specific issues and differences and strengths highlighted. It is lamentable that in many of the descriptions of research projects, the authors tend to give more historical and funding Background than is necessary and miss out an giving a synthesis of the pertinent details.
    Another weakness of the book is its favoritism towards the authors' own works. To a large extent, this bias is natural as the authors know their own works best. However, in an introductory text, it is critical to reference the most appropriate source and give a balanced view of the field. In this respect, 1 feel the book could be more objective in its selection of references and research projects. Introduction to Digital Libraries is definitely a book written for a purpose. LIS undergraduates and "practicing professionals who need to know about recent developments in the field of digital libraries" (p. xiv) will find this book a fine introduction, as it is clearly written and accessible to laymen, giving explanations without delving into terminology and math. As it surveys a large number of projects, it is also an ideal starting point for students to pick and investigate particular DL research projects. However, graduate LIS students who already have a solid understanding of library fundamentals as well as Computer science students may find this volume lacking in details. Alternative texts such as Lesk (1999) and Arms (2000) are possibly more suitable for those who need to investigate topics in depth. For the experienced practitioner or researcher delving into the DL field for the first time, the recent 2002 ARIST chapter by Fox and Urs may also be a suitable alternative. In their introduction, the authors ask, "What are digital libraries? How do they differ from online databases and search services? Will they replace print libraries? What impact will they have an people and the society?" (p. 3). To answer these questions, Chowdhury and Chowdhury offer a multitude of case studies to let the audience draw their own conclusions. To this end, it is my opinion that Introduction to Digital Libraries serves a useful purpose as a supplemental text in the digital library Curriculum but misses the mark of being an authoritative textbook."
  5. Chowdhury, S.; Chowdhury, G.G.: Development of library management system using Micro-CDS/ISIS (1992) 0.01
    0.013742654 = product of:
      0.08245592 = sum of:
        0.08245592 = product of:
          0.16491184 = sum of:
            0.16491184 = weight(_text_:programs in 440) [ClassicSimilarity], result of:
              0.16491184 = score(doc=440,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.6404829 = fieldWeight in 440, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.078125 = fieldNorm(doc=440)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The CDS/ISIS software package has a number of attractive features which make it suitable for library automation. Describes the prototype circulation control system, developed using CDS/ISIS (version 2.33), featuring programs written in CDS/ISIS Pascal
  6. Chowdhury, G.G.; Mahapatra, M.: Applications of the theory of relational analysis in information retrieval (1990) 0.01
    0.0112395715 = product of:
      0.067437425 = sum of:
        0.067437425 = weight(_text_:wide in 3551) [ClassicSimilarity], result of:
          0.067437425 = score(doc=3551,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 3551, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3551)
      0.16666667 = coord(1/6)
    
    Abstract
    Farradane's theory of relational analysis has wide applications in information retrieval. The major areas of application cover their use in retrospective searches, semantic analysis of information, concept organisation and control, efficiency as an information retrieval tool, multilingual indexing tool, in SDI term relations in thesauri, study of nature of subjects, computerised indexing systems, analysis and measuring of information and organisation of current information. Most of the applications were in scientific subjects and the data bases considered were too small to generalise. Suggests 5 new areas of research on relational indexing: compilations of a detailed manual; application in scientific, social sciences, and humanities literature; application in study of the nature of subject literature; comparative efficiency of relational indeximg; and a compilation of a relational thesaurus.
  7. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.01
    0.007020752 = product of:
      0.04212451 = sum of:
        0.04212451 = product of:
          0.08424902 = sum of:
            0.08424902 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.08424902 = score(doc=4577,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    2. 4.2000 18:01:22
  8. Chowdhury, G.G.: Digital libraries and reference services : present and future (2002) 0.01
    0.006159573 = product of:
      0.036957435 = sum of:
        0.036957435 = weight(_text_:web in 4466) [ClassicSimilarity], result of:
          0.036957435 = score(doc=4466,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25496176 = fieldWeight in 4466, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4466)
      0.16666667 = coord(1/6)
    
    Abstract
    Reference services have taken a central place in library and information services. They are also regarded as personalised services since in most cases a personal discussion takes place between a user and a reference librarian. Based on this, the librarian points to the sources that are considered to be most appropriate to meet the specific information need(s) of the user. Since the Web and digital libraries are meant for providing direct access to information sources and services without the intervention of human intermediaries, the pertinent question that appears is whether we need reference services in digital libraries, and, if so, how best to offer such services. Current digital libraries focus more on access to, and retrieval of, digital information, and hardly lay emphasis on the service aspects. This may have been caused by the narrower definitions of digital libraries formulated by digital library researchers. This paper looks at the current state of research in personalised information services in digital libraries. It first analyses some representative definitions of digital libraries in order to establish the need for personalised services. It then provides a brief overview of the various online reference and information services currently available on the Web. The paper also briefly reviews digital library research that specifically focuses on the personalisation of digital libraries and the provision of digital reference and information services. Finally, the paper proposes some new areas of research that may be undertaken to improve the provision of personalised information services in digital libraries.
  9. Chowdhury, G.G.; Neelameghan, A.; Chowdhury, S.: VOCON: Vocabulary control online in MicroIsis databases (1995) 0.00
    0.0049644215 = product of:
      0.029786527 = sum of:
        0.029786527 = product of:
          0.059573054 = sum of:
            0.059573054 = weight(_text_:22 in 1087) [ClassicSimilarity], result of:
              0.059573054 = score(doc=1087,freq=4.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38301262 = fieldWeight in 1087, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1087)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Source
    Knowledge organization. 22(1995) no.1, S.18-22
  10. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.00
    0.0049276585 = product of:
      0.029565949 = sum of:
        0.029565949 = weight(_text_:web in 2643) [ClassicSimilarity], result of:
          0.029565949 = score(doc=2643,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2039694 = fieldWeight in 2643, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2643)
      0.16666667 = coord(1/6)
    
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
  11. Chowdhury, G.G.: Introduction to modern information retrieval (1999) 0.00
    0.0030088935 = product of:
      0.01805336 = sum of:
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 4902) [ClassicSimilarity], result of:
              0.03610672 = score(doc=4902,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 4902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4902)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Content
    Enthält die Kapitel: 1. Basic concepts of information retrieval systems, 2. Database technology, 3. Bibliographic formats, 4. Subject analysis and representation, 5. Automatic indexing and file organization, 6. Vocabulary control, 7. Abstracts and abstracting, 8. Searching and retrieval, 9. Users of information retrieval, 10. Evaluation of information retrieval systems, 11. Evaluation experiments, 12. Online information retrieval, 13. CD-ROM information retrieval, 14. Trends in CD-ROM and online information retrieval, 15. Multimedia information retrieval, 16. Hypertext and hypermedia systems, 17. Intelligent information retrieval, 18. Natural language processing and information retrieval, 19. Natural language interfaces, 20. Natural language text processing and retrieval systems, 21. Problems and prospects of natural language processing systems, 22. The Internet and information retrieval, 23. Trends in information retrieval.