Search (4 results, page 1 of 1)

  • × author_ss:"Gingras, Y."
  • × theme_ss:"Informetrie"
  1. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.02
    0.01896358 = product of:
      0.056890734 = sum of:
        0.031359423 = weight(_text_:web in 2763) [ClassicSimilarity], result of:
          0.031359423 = score(doc=2763,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2763)
        0.02553131 = product of:
          0.05106262 = sum of:
            0.05106262 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.05106262 = score(doc=2763,freq=4.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
  2. Archambault, E.; Campbell, D; Gingras, Y.; Larivière, V.: Comparing bibliometric statistics obtained from the Web of Science and Scopus (2009) 0.01
    0.0075439056 = product of:
      0.045263432 = sum of:
        0.045263432 = weight(_text_:web in 2933) [ClassicSimilarity], result of:
          0.045263432 = score(doc=2933,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 2933, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2933)
      0.16666667 = coord(1/6)
    
    Abstract
    For more than 40 years, the Institute for Scientific Information (ISI, now part of Thomson Reuters) produced the only available bibliographic databases from which bibliometricians could compile large-scale bibliometric indicators. ISI's citation indexes, now regrouped under the Web of Science (WoS), were the major sources of bibliometric data until 2004, when Scopus was launched by the publisher Reed Elsevier. For those who perform bibliometric analyses and comparisons of countries or institutions, the existence of these two major databases raises the important question of the comparability and stability of statistics obtained from different data sources. This paper uses macrolevel bibliometric indicators to compare results obtained from the WoS and Scopus. It shows that the correlations between the measures obtained with both databases for the number of papers and the number of citations received by countries, as well as for their ranks, are extremely high. There is also a very high correlation when countries' papers are broken down by field. The paper thus provides evidence that indicators of scientific production and citations at the country level are stable and largely independent of the database.
    Object
    Web of Science
  3. Gingras, Y.: Bibliometrics and research evaluation : uses and abuses (2016) 0.01
    0.0054970616 = product of:
      0.032982368 = sum of:
        0.032982368 = product of:
          0.065964736 = sum of:
            0.065964736 = weight(_text_:programs in 3805) [ClassicSimilarity], result of:
              0.065964736 = score(doc=3805,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.25619316 = fieldWeight in 3805, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3805)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The research evaluation market is booming. "Ranking," "metrics," "h-index," and "impact factors" are reigning buzzwords. Government and research administrators want to evaluate everything -- teachers, professors, training programs, universities -- using quantitative indicators. Among the tools used to measure "research excellence," bibliometrics -- aggregate data on publications and citations -- has become dominant. Bibliometrics is hailed as an "objective" measure of research quality, a quantitative measure more useful than "subjective" and intuitive evaluation methods such as peer review that have been used since scientific papers were first published in the seventeenth century. In this book, Yves Gingras offers a spirited argument against an unquestioning reliance on bibliometrics as an indicator of research quality. Gingras shows that bibliometric rankings have no real scientific validity, rarely measuring what they pretend to. Although the study of publication and citation patterns, at the proper scales, can yield insights on the global dynamics of science over time, ill-defined quantitative indicators often generate perverse and unintended effects on the direction of research. Moreover, abuse of bibliometrics occurs when data is manipulated to boost rankings. Gingras looks at the politics of evaluation and argues that using numbers can be a way to control scientists and diminish their autonomy in the evaluation process. Proposing precise criteria for establishing the validity of indicators at a given scale of analysis, Gingras questions why universities are so eager to let invalid indicators influence their research strategy.
  4. Kirchik, O.; Gingras, Y.; Larivière, V.: Changes in publication languages and citation practices and their effect on the scientific impact of Russian science (1993-2010) (2012) 0.00
    0.004355476 = product of:
      0.026132854 = sum of:
        0.026132854 = weight(_text_:web in 284) [ClassicSimilarity], result of:
          0.026132854 = score(doc=284,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=284)
      0.16666667 = coord(1/6)
    
    Abstract
    This article analyzes the effects of publication language on the international scientific visibility of Russia using the Web of Science (WoS). Like other developing and transition countries, it is subject to a growing pressure to "internationalize" its scientific activities, which primarily means a shift to English as a language of scientific communication. But to what extent does the transition to English improve the impact of research? The case of Russia is of interest in this respect as the existence of many combinations of national journals and languages of publications (namely, Russian and English, including translated journals) provide a kind of natural I experiment to test the effects of language and publisher's country on the international visibility of research through citations as well as on the referencing practices of authors. Our analysis points to the conclusion that the production of original English-language papers in foreign journals is a more efficient strategy of internationalization than the mere translation of domestic journals. If the objective of a country is to maximize the international visibility of its scientific work, then the efforts should go into the promotion of publication in reputed English-language journals to profit from the added effect provided by the Matthew effect of these venues.