Search (6 results, page 1 of 1)

  • × author_ss:"Zhao, D."
  • × theme_ss:"Informetrie"
  1. Zhao, D.; Strotmann, A.: Information science during the first decade of the web : an enriched author cocitation analysis (2008) 0.04
    0.03737321 = product of:
      0.11211963 = sum of:
        0.057803504 = weight(_text_:wide in 1720) [ClassicSimilarity], result of:
          0.057803504 = score(doc=1720,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 1720, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1720)
        0.054316122 = weight(_text_:web in 1720) [ClassicSimilarity], result of:
          0.054316122 = score(doc=1720,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 1720, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1720)
      0.33333334 = coord(2/6)
    
    Abstract
    Using an enriched author cocitation analysis (ACA), we map information science (IS) for 1996-2005, a decade of explosive development of the World Wide Web, to examine its development since the landmark study by White and McCain (1998). The Web, we find, has had a profound impact on IS, driving the creation of new disciplines and revitalization or obsolescence of old, and most importantly, bridging the chasm between the literatures and retrieval IS camps. Simultaneously, the development of IS towards cognitive aspects has intensified. Our study enriches classic ACA in that it employs both orthogonal and oblique rotations in the factor analysis (FA), and reports both pattern and structure matrices for the latter, thus enabling a comparison between these several FA methods in ACA. Each method provides interesting information not available from the others, we find, especially when results are also visualized in the novel manner we introduce here.
  2. Zhao, D.; Strotmann, A.: Can citation analysis of Web publications better detect research fronts? (2007) 0.03
    0.030401578 = product of:
      0.09120473 = sum of:
        0.05843484 = weight(_text_:web in 471) [ClassicSimilarity], result of:
          0.05843484 = score(doc=471,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.40312994 = fieldWeight in 471, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=471)
        0.03276989 = weight(_text_:computer in 471) [ClassicSimilarity], result of:
          0.03276989 = score(doc=471,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=471)
      0.33333334 = coord(2/6)
    
    Abstract
    We present evidence that in some research fields, research published in journals and reported on the Web may collectively represent different evolutionary stages of the field, with journals lagging a few years behind the Web on average, and that a "two-tier" scholarly communication system may therefore be evolving. We conclude that in such fields, (a) for detecting current research fronts, author co-citation analyses (ACA) using articles published on the Web as a data source can outperform traditional ACAs using articles published in journals as data, and that (b) as a result, it is important to use multiple data sources in citation analysis studies of scholarly communication for a complete picture of communication patterns. Our evidence stems from comparing the respective intellectual structures of the XML research field, a subfield of computer science, as revealed from three sets of ACA covering two time periods: (a) from the field's beginnings in 1996 to 2001, and (b) from 2001 to 2006. For the first time period, we analyze research articles both from journals as indexed by the Science Citation Index (SCI) and from the Web as indexed by CiteSeer. We follow up by an ACA of SCI data for the second time period. We find that most trends in the evolution of this field from the first to the second time period that we find when comparing ACA results from the SCI between the two time periods already were apparent in the ACA results from CiteSeer during the first time period.
  3. Zhao, D.; Strotmann, A.: ¬The knowledge base and research front of information science 2006-2010 : an author cocitation and bibliographic coupling analysis (2014) 0.02
    0.023242442 = product of:
      0.069727324 = sum of:
        0.036957435 = weight(_text_:web in 1259) [ClassicSimilarity], result of:
          0.036957435 = score(doc=1259,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25496176 = fieldWeight in 1259, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1259)
        0.03276989 = weight(_text_:computer in 1259) [ClassicSimilarity], result of:
          0.03276989 = score(doc=1259,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 1259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1259)
      0.33333334 = coord(2/6)
    
    Abstract
    This study continues a long history of author cocitation analysis (and more recently, author bibliographic coupling analysis) of the intellectual structure of information science (IS) into the time period 2006 to 2010 (IS 2006-2010). We find that web technologies continue to drive developments, especially at the research front, although perhaps more indirectly than before. A broadening of perspectives is visible in IS 2006-2010, where network science becomes influential and where full-text analysis methods complement traditional computer science influences. Research in the areas of the h-index and mapping of science appears to have been highlights of IS 2006-2011. This study tests and confirms a forecast made previously by comparing knowledge-base and research-front findings for IS 2001-2005, which expected both the information retrieval (IR) systems and webometrics specialties to shrink in 2006 to 2010. A corresponding comparison of the knowledge base and research front of IS 2006-2010 suggests a continuing decline of the IR systems specialty in the near future, but also a considerable (re)growth of the webometrics area after a period of decline from 2001 to 2005 and 2006 to 2010, with the latter due perhaps in part to its contribution to an emerging web science.
  4. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.01
    0.010561468 = product of:
      0.063368805 = sum of:
        0.063368805 = weight(_text_:web in 1065) [ClassicSimilarity], result of:
          0.063368805 = score(doc=1065,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43716836 = fieldWeight in 1065, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1065)
      0.16666667 = coord(1/6)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
  5. Zhao, D.; Strotmann, A.: Evolution of research activities and intellectual influences in information science 1996-2005 : introducing author bibliographic-coupling analysis (2008) 0.00
    0.004355476 = product of:
      0.026132854 = sum of:
        0.026132854 = weight(_text_:web in 2384) [ClassicSimilarity], result of:
          0.026132854 = score(doc=2384,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 2384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2384)
      0.16666667 = coord(1/6)
    
    Abstract
    Author cocitation analysis (ACA) has frequently been applied over the last two decades for mapping the intellectual structure of a research field as represented by its authors. However, what is mapped in ACA is actually the structure of intellectual influences on a research field as perceived by its active authors. In this exploratory paper, by contrast, we introduce author bibliographic-coupling analysis (ABCA) as a method to map the research activities of active authors themselves for a more realistic picture of the current state of research in a field. We choose the information science (IS) field and study its intellectual structure both in terms of current research activities as seen from ABCA and in terms of intellectual influences on its research as shown from ACA. We examine how these two aspects of the intellectual structure of the IS field are related, and how they both developed during the first decade of the Web, 1996-2005. We find that these two citation-based author-mapping methods complement each other, and that, in combination, they provide a more comprehensive view of the intellectual structure of the IS field than either of them can provide on its own.
  6. Zhao, D.; Strotmann, A.: Intellectual structure of information science 2011-2020 : an author co-citation analysis (2022) 0.00
    0.0034843804 = product of:
      0.020906283 = sum of:
        0.020906283 = weight(_text_:web in 610) [ClassicSimilarity], result of:
          0.020906283 = score(doc=610,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.14422815 = fieldWeight in 610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=610)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose This study continues a long history of author co-citation analysis of the intellectual structure of information science into the time period of 2011-2020. It also examines changes in this structure from 2006-2010 through 2011-2015 to 2016-2020. Results will contribute to a better understanding of the information science research field. Design/methodology/approach The well-established procedures and techniques for author co-citation analysis were followed. Full records of research articles in core information science journals published during 2011-2020 were retrieved and downloaded from the Web of Science database. About 150 most highly cited authors in each of the two five-year time periods were selected from this dataset to represent this field, and their co-citation counts were calculated. Each co-citation matrix was input into SPSS for factor analysis, and results were visualized in Pajek. Factors were interpreted as specialties and labeled upon an examination of articles written by authors who load primarily on each factor. Findings The two-camp structure of information science continued to be present clearly. Bibliometric indicators for research evaluation dominated the Knowledge Domain Analysis camp during both fivr-year time periods, whereas interactive information retrieval (IR) dominated the IR camp during 2011-2015 but shared dominance with information behavior during 2016-2020. Bridging between the two camps became increasingly weaker and was only provided by the scholarly communication specialty during 2016-2020. The IR systems specialty drifted further away from the IR camp. The information behavior specialty experienced a deep slump during 2011-2020 in its evolution process. Altmetrics grew to dominate the Webometrics specialty and brought it to a sharp increase during 2016-2020. Originality/value Author co-citation analysis (ACA) is effective in revealing intellectual structures of research fields. Most related studies used term-based methods to identify individual research topics but did not examine the interrelationships between these topics or the overall structure of the field. The few studies that did discuss the overall structure paid little attention to the effect of changes to the source journals on the results. The present study does not have these problems and continues the long history of benchmark contributions to a better understanding of the information science field using ACA.