Search (7 results, page 1 of 1)

  • × theme_ss:"Formale Begriffsanalyse"
  • × year_i:[1990 TO 2000}
  1. Neuss, C.; Kent, R.E.: Conceptual analysis of resource meta-information (1995) 0.04
    0.04316772 = product of:
      0.12950316 = sum of:
        0.07707134 = weight(_text_:wide in 2204) [ClassicSimilarity], result of:
          0.07707134 = score(doc=2204,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.3916274 = fieldWeight in 2204, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=2204)
        0.05243182 = weight(_text_:computer in 2204) [ClassicSimilarity], result of:
          0.05243182 = score(doc=2204,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 2204, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=2204)
      0.33333334 = coord(2/6)
    
    Abstract
    With the continuously growing amount of Internet accessible information resources, locating relevant information in the WWW becomes increasingly difficult. Recent developments provide scalable mechanisms for maintaing indexes of network accessible information. In order to implement sophisticated retrieval engines, a means of automatic analysis and classification of document meta information has to be found. Proposes the use of methods from the mathematical theory of concept analysis to analyze and interactively explore the information space defined by wide area resource discovery services
    Source
    Computer networks and ISDN systems. 27(1995) no.6, S.973-984
  2. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.03
    0.02550099 = product of:
      0.07650297 = sum of:
        0.05243182 = weight(_text_:computer in 1901) [ClassicSimilarity], result of:
          0.05243182 = score(doc=1901,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 1901, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=1901)
        0.024071148 = product of:
          0.048142295 = sum of:
            0.048142295 = weight(_text_:22 in 1901) [ClassicSimilarity], result of:
              0.048142295 = score(doc=1901,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.30952093 = fieldWeight in 1901, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1901)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    TOSCANA is a computer program which allows an online interaction with larger data bases to analyse and explore data conceptually. It uses labelled line diagrams of concept lattices to communicate knowledge coded in given data. The basic problem to create online presentations of concept lattices is solved by composing prepared diagrams to nested line diagrams. A larger number of applications in different areas have already shown that TOSCANA is a useful tool for many purposes
    Source
    Knowledge organization. 22(1995) no.2, S.78-81
  3. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.01
    0.009218805 = product of:
      0.055312827 = sum of:
        0.055312827 = weight(_text_:web in 2470) [ClassicSimilarity], result of:
          0.055312827 = score(doc=2470,freq=14.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.38159183 = fieldWeight in 2470, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2470)
      0.16666667 = coord(1/6)
    
    Abstract
    The writers show that a faceted navigation structure makes web sites easier to use. They begin by analyzing the web sites of three library and information science faculties, and seeing if the sites easily provide the answers to five specific questions, e.g., how the school ranks in national evaluations. (It is worth noting that the web site of the Faculty of Information Studies and the University of Toronto, where this bibliography is being written, would fail on four of the five questions.) Using examples from LIS web site content, they show how facets can be related and constructed, and use concept diagrams for illustration. They briefly discuss constraints necessary when joining facets: for example, enrolled students can be full- or part-time, but prospective and alumni students cannot. It should not be possible to construct terms such as "part-time alumni" (see Yannis Tzitzikas et al, below in Background). They conclude that a faceted approach is best for web site navigation, because it can clearly show where the user is in the site, what the related pages are, and how to get to them. There is a short discussion of user interfaces, and the diagrams in the paper will be of interest to anyone making a facet-based web site. This paper is clearly written, informative, and thought-provoking. Uta Priss's web site lists her other publications, many of which are related and some of which are online: http://www.upriss.org.uk/top/research.html.
  4. Sedelow, W.A.: ¬The formal analysis of concepts (1993) 0.01
    0.008738637 = product of:
      0.05243182 = sum of:
        0.05243182 = weight(_text_:computer in 620) [ClassicSimilarity], result of:
          0.05243182 = score(doc=620,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 620, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=620)
      0.16666667 = coord(1/6)
    
    Abstract
    The present paper focuses on the extraction, by means of a formal logical/mathematical methodology (i.e. automatically, exclusively by rule), of concept content, as in, for example, continuous discourse. The approach to a fully formal defintion of concept content ultimately is owing to a German government initiative to establish 'standards' regarding concepts, in conjunction with efforts to stipulate precisely (and then, derivatively, through computer prgrams) data and information needs according to work role in certain government offices
  5. Ganter, B.; Wille, R.: Formal concept analysis : mathematical foundations (1998) 0.01
    0.0065539777 = product of:
      0.039323866 = sum of:
        0.039323866 = weight(_text_:computer in 5061) [ClassicSimilarity], result of:
          0.039323866 = score(doc=5061,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 5061, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=5061)
      0.16666667 = coord(1/6)
    
    Abstract
    This is the first textbook on formal concept analysis. It gives a systematic presentation of the mathematical foundations and their relation to applications in computer science, especially data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. Theory and graphical representation are thus closely coupled together. The mathematical foundations are treated thouroughly and illuminated by means of numerous examples. Since computers are being used ever more widely for knowledge processing, formal methods for conceptual analysis are gaining in importance. This book makes the basic theory for such methods accessible in a compact form
  6. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen : Ein Beitrag zur Restrukturierung der mathematischen Logik (1998) 0.01
    0.005014823 = product of:
      0.030088935 = sum of:
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 3142) [ClassicSimilarity], result of:
              0.06017787 = score(doc=3142,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    26. 2.2008 15:58:22
  7. Priss, U.: Faceted knowledge representation (1999) 0.00
    0.003510376 = product of:
      0.021062255 = sum of:
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.04212451 = score(doc=2654,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 1.2016 17:30:31