Search (53 results, page 1 of 3)

  • × theme_ss:"Internet"
  • × theme_ss:"Informetrie"
  1. Thelwall, M.; Vaughan, L.: Webometrics : an introduction to the special issue (2004) 0.09
    0.085657865 = product of:
      0.17131573 = sum of:
        0.07707134 = weight(_text_:wide in 2908) [ClassicSimilarity], result of:
          0.07707134 = score(doc=2908,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.3916274 = fieldWeight in 2908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=2908)
        0.041812565 = weight(_text_:web in 2908) [ClassicSimilarity], result of:
          0.041812565 = score(doc=2908,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2884563 = fieldWeight in 2908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=2908)
        0.05243182 = weight(_text_:computer in 2908) [ClassicSimilarity], result of:
          0.05243182 = score(doc=2908,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 2908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=2908)
      0.5 = coord(3/6)
    
    Abstract
    Webometrics, the quantitative study of Web phenomena, is a field encompassing contributions from information science, computer science, and statistical physics. Its methodology draws especially from bibliometrics. This special issue presents contributions that both push for ward the field and illustrate a wide range of webometric approaches.
  2. Stuart, D.: Web metrics for library and information professionals (2014) 0.06
    0.06417656 = product of:
      0.19252968 = sum of:
        0.075397335 = weight(_text_:wide in 2274) [ClassicSimilarity], result of:
          0.075397335 = score(doc=2274,freq=10.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.38312116 = fieldWeight in 2274, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
        0.11713234 = weight(_text_:web in 2274) [ClassicSimilarity], result of:
          0.11713234 = score(doc=2274,freq=82.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.808072 = fieldWeight in 2274, product of:
              9.055386 = tf(freq=82.0), with freq of:
                82.0 = termFreq=82.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
      0.33333334 = coord(2/6)
    
    Abstract
    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional. The book will provide a practical introduction to web metrics for a wide range of library and information professionals, from the bibliometrician wanting to demonstrate the wider impact of a researcher's work than can be demonstrated through traditional citations databases, to the reference librarian wanting to measure how successfully they are engaging with their users on Twitter. It will be a valuable tool for anyone who wants to not only understand the impact of content, but demonstrate this impact to others within the organization and beyond.
    Content
    1. Introduction. MetricsIndicators -- Web metrics and Ranganathan's laws of library science -- Web metrics for the library and information professional -- The aim of this book -- The structure of the rest of this book -- 2. Bibliometrics, webometrics and web metrics. Web metrics -- Information science metrics -- Web analytics -- Relational and evaluative metrics -- Evaluative web metrics -- Relational web metrics -- Validating the results -- 3. Data collection tools. The anatomy of a URL, web links and the structure of the web -- Search engines 1.0 -- Web crawlers -- Search engines 2.0 -- Post search engine 2.0: fragmentation -- 4. Evaluating impact on the web. Websites -- Blogs -- Wikis -- Internal metrics -- External metrics -- A systematic approach to content analysis -- 5. Evaluating social media impact. Aspects of social network sites -- Typology of social network sites -- Research and tools for specific sites and services -- Other social network sites -- URL shorteners: web analytic links on any site -- General social media impact -- Sentiment analysis -- 6. Investigating relationships between actors. Social network analysis methods -- Sources for relational network analysis -- 7. Exploring traditional publications in a new environment. More bibliographic items -- Full text analysis -- Greater context -- 8. Web metrics and the web of data. The web of data -- Building the semantic web -- Implications of the web of data for web metrics -- Investigating the web of data today -- SPARQL -- Sindice -- LDSpider: an RDF web crawler -- 9. The future of web metrics and the library and information professional. How far we have come -- The future of web metrics -- The future of the library and information professional and web metrics.
    RSWK
    Bibliothek / World Wide Web / World Wide Web 2.0 / Analyse / Statistik
    Bibliometrie / Semantic Web / Soziale Software
    Subject
    Bibliothek / World Wide Web / World Wide Web 2.0 / Analyse / Statistik
    Bibliometrie / Semantic Web / Soziale Software
  3. Yang, S.; Han, R.; Ding, J.; Song, Y.: ¬The distribution of Web citations (2012) 0.05
    0.0547482 = product of:
      0.16424459 = sum of:
        0.108632244 = weight(_text_:web in 2735) [ClassicSimilarity], result of:
          0.108632244 = score(doc=2735,freq=24.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.7494315 = fieldWeight in 2735, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2735)
        0.05561234 = weight(_text_:computer in 2735) [ClassicSimilarity], result of:
          0.05561234 = score(doc=2735,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.34261024 = fieldWeight in 2735, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=2735)
      0.33333334 = coord(2/6)
    
    Abstract
    A substantial amount of research has focused on the persistence or availability of Web citations. The present study analyzes Web citation distributions. Web citations are defined as the mentions of the URLs of Web pages (Web resources) as references in academic papers. The present paper primarily focuses on the analysis of the URLs of Web citations and uses three sets of data, namely, Set 1 from the Humanities and Social Science Index in China (CSSCI, 1998-2009), Set 2 from the publications of two international computer science societies, Communications of the ACM and IEEE Computer (1995-1999), and Set 3 from the medical science database, MEDLINE, of the National Library of Medicine (1994-2006). Web citation distributions are investigated based on Web site types, Web page types, URL frequencies, URL depths, URL lengths, and year of article publication. Results show significant differences in the Web citation distributions among the three data sets. However, when the URLs of Web citations with the same hostnames are aggregated, the distributions in the three data sets are consistent with the power law (the Lotka function).
  4. Cothey, V.: Web-crawling reliability (2004) 0.05
    0.05474496 = product of:
      0.16423488 = sum of:
        0.067437425 = weight(_text_:wide in 3089) [ClassicSimilarity], result of:
          0.067437425 = score(doc=3089,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 3089, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3089)
        0.09679745 = weight(_text_:web in 3089) [ClassicSimilarity], result of:
          0.09679745 = score(doc=3089,freq=14.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6677857 = fieldWeight in 3089, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3089)
      0.33333334 = coord(2/6)
    
    Abstract
    In this article, I investigate the reliability, in the social science sense, of collecting informetric data about the World Wide Web by Web crawling. The investigation includes a critical examination of the practice of Web crawling and contrasts the results of content crawling with the results of link crawling. It is shown that Web crawling by search engines is intentionally biased and selective. I also report the results of a [arge-scale experimental simulation of Web crawling that illustrates the effects of different crawling policies an data collection. It is concluded that the reliability of Web crawling as a data collection technique is improved by fuller reporting of relevant crawling policies.
  5. Thelwall, M.: Webometrics (2009) 0.05
    0.04692425 = product of:
      0.14077275 = sum of:
        0.057803504 = weight(_text_:wide in 3906) [ClassicSimilarity], result of:
          0.057803504 = score(doc=3906,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 3906, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3906)
        0.08296924 = weight(_text_:web in 3906) [ClassicSimilarity], result of:
          0.08296924 = score(doc=3906,freq=14.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.57238775 = fieldWeight in 3906, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3906)
      0.33333334 = coord(2/6)
    
    Abstract
    Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
  6. Larson, R.R.: Bibliometrics of the World Wide Web : an exploratory analysis of the intellectual structure of cyberspace (1996) 0.05
    0.046869807 = product of:
      0.14060941 = sum of:
        0.067437425 = weight(_text_:wide in 7334) [ClassicSimilarity], result of:
          0.067437425 = score(doc=7334,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 7334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7334)
        0.073171996 = weight(_text_:web in 7334) [ClassicSimilarity], result of:
          0.073171996 = score(doc=7334,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.50479853 = fieldWeight in 7334, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7334)
      0.33333334 = coord(2/6)
    
    Abstract
    Examines the explosive growth and the bibliometrics of the WWW based on both analysis of over 30 GBytes of WWW pages collected by the Inktomi Web Crawler and on the use of the DEC AltaVista search engine for cocitation analysis of a set of Earth Science related WWW sites. Examines the statistical characteristics of web documents and their links, and the characteristics of highly cited web documents
  7. fwt: Webseiten liegen im Schnitt nur 19 Klicks auseinander (2001) 0.05
    0.04535421 = product of:
      0.13606262 = sum of:
        0.0817465 = weight(_text_:wide in 5962) [ClassicSimilarity], result of:
          0.0817465 = score(doc=5962,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.4153836 = fieldWeight in 5962, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=5962)
        0.054316122 = weight(_text_:web in 5962) [ClassicSimilarity], result of:
          0.054316122 = score(doc=5962,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 5962, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5962)
      0.33333334 = coord(2/6)
    
    Abstract
    "Dokumente im World Wide Web liegen durchschnittlich 19 Mausklicks voneinander entfernt - angesichts von schätzungsweise mehr als einer Milliarde Seiten erstaunlich nahe. Albert-Lazlo Barabai vom Institut für Physik der University von Notre Dame (US-Staat Indiana) stellt seine Studie in der britischen Fachzeitschrift Physics World (Juli 2001, S. 33) vor. Der Statistiker konstruierte im Rechner zunächst Modelle von großen Computernetzwerken. Grundlage für diese Abbilder war die Analyse eines kleinen Teils der Verbindungen im Web, die der Wissenschaftler automatisch von einem Programm hatte prüfen lassen. Um seine Ergebnisse zu erklären, vergleicht Barabai das World Wide Web mit den Verbindungen internationaler Fluglinien. Dort gebe es zahlreiche Flughäfen, die meist nur mit anderen Flugplätzen in ihrer näheren Umgebung in Verbindung stünden. Diese kleineren Verteiler stehen ihrerseits mit einigen wenigen großen Airports wie Frankfurt, New York oder Hongkong in Verbindung. Ähnlich sei es im Netz, wo wenige große Server die Verteilung großer Datenmengen übernähmen und weite Entfernungen überbrückten. Damit seien die Online-Wege vergleichsweise kurz. Die Untersuchung spiegelt allerdings die Situation des Jahres 1999 wider. Seinerzeit gab es vermutlich 800 Millionen Knoten."
  8. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.04
    0.037056148 = product of:
      0.111168444 = sum of:
        0.078398556 = weight(_text_:web in 4279) [ClassicSimilarity], result of:
          0.078398556 = score(doc=4279,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5408555 = fieldWeight in 4279, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
        0.03276989 = weight(_text_:computer in 4279) [ClassicSimilarity], result of:
          0.03276989 = score(doc=4279,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.33333334 = coord(2/6)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  9. Almind, T.C.; Ingwersen, P.: Informetric analyses on the World Wide Web : methodological approaches to 'Webometrics' (1997) 0.03
    0.034674477 = product of:
      0.10402343 = sum of:
        0.067437425 = weight(_text_:wide in 4711) [ClassicSimilarity], result of:
          0.067437425 = score(doc=4711,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 4711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4711)
        0.036585998 = weight(_text_:web in 4711) [ClassicSimilarity], result of:
          0.036585998 = score(doc=4711,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 4711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4711)
      0.33333334 = coord(2/6)
    
  10. Bar-Ilan, J.; Peritz, B.C.: Informetric theories and methods for exploring the Internet : an analytical survey of recent research literature (2002) 0.03
    0.029720977 = product of:
      0.08916293 = sum of:
        0.057803504 = weight(_text_:wide in 813) [ClassicSimilarity], result of:
          0.057803504 = score(doc=813,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 813, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=813)
        0.031359423 = weight(_text_:web in 813) [ClassicSimilarity], result of:
          0.031359423 = score(doc=813,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 813, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=813)
      0.33333334 = coord(2/6)
    
    Abstract
    The Internet, and more specifically the World Wide Web, is quickly becoming one of our main information sources. Systematic evaluation and analysis can help us understand how this medium works, grows, and changes, and how it influences our lives and research. New approaches in informetrics can provide an appropriate means towards achieving the above goals, and towards establishing a sound theory. This paper presents a selective review of research based on the Internet, using bibliometric and informetric methods and tools. Some of these studies clearly show the applicability of bibliometric laws to the Internet, while others establish new definitions and methods based on the respective definitions for printed sources. Both informetrics and Internet research can gain from these additional methods.
  11. Tonta, Y.: Scholarly communication and the use of networked information sources (1996) 0.03
    0.025285622 = product of:
      0.075856864 = sum of:
        0.057803504 = weight(_text_:wide in 6389) [ClassicSimilarity], result of:
          0.057803504 = score(doc=6389,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 6389, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=6389)
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 6389) [ClassicSimilarity], result of:
              0.03610672 = score(doc=6389,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 6389, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6389)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Examines the use of networked information sources in scholarly communication. Networked information sources are defined broadly to cover: documents and images stored on electronic network hosts; data files; newsgroups; listservs; online information services and electronic periodicals. Reports results of a survey to determine how heavily, if at all, networked information sources are cited in scholarly printed periodicals published in 1993 and 1994. 27 printed periodicals, representing a wide range of subjects and the most influential periodicals in their fields, were identified through the Science Citation Index and Social Science Citation Index Journal Citation Reports. 97 articles were selected for further review and references, footnotes and bibliographies were checked for references to networked information sources. Only 2 articles were found to contain such references. Concludes that, although networked information sources facilitate scholars' work to a great extent during the research process, scholars have yet to incorporate such sources in the bibliographies of their published articles
    Source
    IFLA journal. 22(1996) no.3, S.240-245
  12. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.02
    0.020800762 = product of:
      0.062402282 = sum of:
        0.04434892 = weight(_text_:web in 2742) [ClassicSimilarity], result of:
          0.04434892 = score(doc=2742,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 2742, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
              0.03610672 = score(doc=2742,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11
  13. Neth, M.: Citation analysis and the Web (1998) 0.02
    0.019216085 = product of:
      0.057648253 = sum of:
        0.036585998 = weight(_text_:web in 108) [ClassicSimilarity], result of:
          0.036585998 = score(doc=108,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 108, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=108)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 108) [ClassicSimilarity], result of:
              0.04212451 = score(doc=108,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    10. 1.1999 16:22:37
  14. Ingwersen, P.: ¬The calculation of Web impact factors (1998) 0.02
    0.018292997 = product of:
      0.10975798 = sum of:
        0.10975798 = weight(_text_:web in 1071) [ClassicSimilarity], result of:
          0.10975798 = score(doc=1071,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.75719774 = fieldWeight in 1071, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1071)
      0.16666667 = coord(1/6)
    
    Abstract
    Reports investigations into the feasibility and reliability of calculating impact factors for web sites, called Web Impact Factors (Web-IF). analyzes a selection of 7 small and medium scale national and 4 large web domains as well as 6 institutional web sites over a series of snapshots taken of the web during a month. Describes the data isolation and calculation methods and discusses the tests. The results thus far demonstrate that Web-IFs are calculable with high confidence for national and sector domains whilst institutional Web-IFs should be approached with caution
  15. Koehler, W.: Web page change and persistence : a four-year longitudinal study (2002) 0.02
    0.017334577 = product of:
      0.10400745 = sum of:
        0.10400745 = weight(_text_:web in 203) [ClassicSimilarity], result of:
          0.10400745 = score(doc=203,freq=22.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.717526 = fieldWeight in 203, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=203)
      0.16666667 = coord(1/6)
    
    Abstract
    Changes in the topography of the Web can be expressed in at least four ways: (1) more sites on more servers in more places, (2) more pages and objects added to existing sites and pages, (3) changes in traffic, and (4) modifications to existing text, graphic, and other Web objects. This article does not address the first three factors (more sites, more pages, more traffic) in the growth of the Web. It focuses instead on changes to an existing set of Web documents. The article documents changes to an aging set of Web pages, first identified and "collected" in December 1996 and followed weekly thereafter. Results are reported through February 2001. The article addresses two related phenomena: (1) the life cycle of Web objects, and (2) changes to Web objects. These data reaffirm that the half-life of a Web page is approximately 2 years. There is variation among Web pages by top-level domain and by page type (navigation, content). Web page content appears to stabilize over time; aging pages change less often than once they did
  16. Park, H.W.; Barnett, G.A.; Nam, I.-Y.: Hyperlink - affiliation network structure of top Web sites : examining affiliates with hyperlink in Korea (2002) 0.02
    0.017246805 = product of:
      0.10348082 = sum of:
        0.10348082 = weight(_text_:web in 584) [ClassicSimilarity], result of:
          0.10348082 = score(doc=584,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.71389294 = fieldWeight in 584, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=584)
      0.16666667 = coord(1/6)
    
    Abstract
    This article argues that individual Web sites form hyperlink-affiliations with others for the purpose of strengthening their individual trust, expertness, and safety. It describes the hyperlink-affiliation network structure of Korea's top 152 Web sites. The data were obtained from their Web sites for October 2000. The results indicate that financial Web sites, such as credit card and stock Web sites, occupy the most central position in the network. A cluster analysis reveals that the structure of the hyperlink-affiliation network is influenced by the financial Web sites with which others are affiliated. These findings are discussed from the perspective of Web site credibility.
  17. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.02
    0.01570389 = product of:
      0.09422334 = sum of:
        0.09422334 = weight(_text_:web in 5176) [ClassicSimilarity], result of:
          0.09422334 = score(doc=5176,freq=26.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.65002745 = fieldWeight in 5176, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5176)
      0.16666667 = coord(1/6)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
  18. Maharana, B.; Nayak, K.; Sahu, N.K.: Scholarly use of web resources in LIS research : a citation analysis (2006) 0.02
    0.01570389 = product of:
      0.09422334 = sum of:
        0.09422334 = weight(_text_:web in 53) [ClassicSimilarity], result of:
          0.09422334 = score(doc=53,freq=26.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.65002745 = fieldWeight in 53, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=53)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - The essential purpose of this paper is to measure the amount of web resources used for scholarly contributions in the area of library and information science (LIS) in India. It further aims to make an analysis of the nature and type of web resources and studies the various standards for web citations. Design/methodology/approach - In this study, the result of analysis of 292 web citations spread over 95 scholarly papers published in the proceedings of the National Conference of the Society for Information Science, India (SIS-2005) has been reported. All the 292 web citations were scanned and data relating to types of web domains, file formats, styles of citations, etc., were collected through a structured check list. The data thus obtained were systematically analyzed, figurative representations were made and appropriate interpretations were drawn. Findings - The study revealed that 292 (34.88 per cent) out of 837 were web citations, proving a significant correlation between the use of Internet resources and research productivity of LIS professionals in India. The highest number of web citations (35.6 per cent) was from .edu/.ac type domains. Most of the web resources (46.9 per cent) cited in the study were hypertext markup language (HTML) files. Originality/value - The paper is the result of an original analysis of web citations undertaken in order to study the dependence of LIS professionals in India on web sources for their scholarly contributions. This carries research value for web content providers, authors and researchers in LIS.
  19. Hong, T.: ¬The influence of structural and message features an Web site credibility (2006) 0.02
    0.015679711 = product of:
      0.094078265 = sum of:
        0.094078265 = weight(_text_:web in 5787) [ClassicSimilarity], result of:
          0.094078265 = score(doc=5787,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.64902663 = fieldWeight in 5787, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5787)
      0.16666667 = coord(1/6)
    
    Abstract
    This article explores the associations that message features and Web structural features have with perceptions of Web site credibility. In a within-subjects experiment, 84 participants actively located health-related Web sites an the basis of two tasks that differed in task specificity and complexity. Web sites that were deemed most credible were content analyzed for message features and structural features that have been found to be associated with perceptions of source credibility. Regression analyses indicated that message features predicted perceived Web site credibility for both searches when controlling for Internet experience and issue involvement. Advertisements and structural features had no significant effects an perceived Web site credibility. Institutionaffiliated domain names (.gov, org, edu) predicted Web site credibility, but only in the general search, which was more difficult. Implications of results are discussed in terms of online credibility research and Web site design.
  20. Bar-Ilan, J.: ¬The Web as an information source on informetrics? : A content analysis (2000) 0.01
    0.0147829745 = product of:
      0.08869784 = sum of:
        0.08869784 = weight(_text_:web in 4587) [ClassicSimilarity], result of:
          0.08869784 = score(doc=4587,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6119082 = fieldWeight in 4587, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4587)
      0.16666667 = coord(1/6)
    
    Abstract
    This article addresses the question of whether the Web can serve as an information source for research. Specifically, it analyzes by way of content analysis the Web pages retrieved by the major search engines on a particular date (June 7, 1998), as a result of the query 'informetrics OR informetric'. In 807 out of the 942 retrieved pages, the search terms were mentioned in the context of information science. Over 70% of the pages contained only indirect information on the topic, in the form of hypertext links and bibliographical references without annotation. The bibliographical references extracted from the Web pages were analyzed, and lists of most productive authors, most cited authors, works, and sources were compiled. The list of reference obtained from the Web was also compared to data retrieved from commercial databases. For most cases, the list of references extracted from the Web outperformed the commercial, bibliographic databases. The results of these comparisons indicate that valuable, freely available data is hidden in the Web waiting to be extracted from the millions of Web pages

Languages

  • e 49
  • d 4

Types

  • a 51
  • m 2
  • More… Less…