Search (102 results, page 1 of 6)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.13
    0.1318309 = product of:
      0.19774634 = sum of:
        0.067437425 = weight(_text_:wide in 1319) [ClassicSimilarity], result of:
          0.067437425 = score(doc=1319,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 1319, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.063368805 = weight(_text_:web in 1319) [ClassicSimilarity], result of:
          0.063368805 = score(doc=1319,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43716836 = fieldWeight in 1319, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.04587784 = weight(_text_:computer in 1319) [ClassicSimilarity], result of:
          0.04587784 = score(doc=1319,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 1319, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.04212451 = score(doc=1319,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.6666667 = coord(4/6)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
    Source
    Computer networks and ISDN systems. 30(1998) nos.1/7, S.621-623
  2. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.08
    0.07827856 = product of:
      0.15655711 = sum of:
        0.08961702 = weight(_text_:web in 1026) [ClassicSimilarity], result of:
          0.08961702 = score(doc=1026,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6182494 = fieldWeight in 1026, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.04587784 = weight(_text_:computer in 1026) [ClassicSimilarity], result of:
          0.04587784 = score(doc=1026,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.04212451 = score(doc=1026,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Series
    Lecture notes in computer science; vol.2769
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
    Theme
    Semantic Web
  3. Khan, M.S.; Khor, S.: Enhanced Web document retrieval using automatic query expansion (2004) 0.05
    0.04535421 = product of:
      0.13606262 = sum of:
        0.0817465 = weight(_text_:wide in 2091) [ClassicSimilarity], result of:
          0.0817465 = score(doc=2091,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.4153836 = fieldWeight in 2091, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
        0.054316122 = weight(_text_:web in 2091) [ClassicSimilarity], result of:
          0.054316122 = score(doc=2091,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 2091, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
      0.33333334 = coord(2/6)
    
    Abstract
    The ever growing popularity of the Internet as a source of information, coupled with the accompanying growth in the number of documents made available through the World Wide Web, is leading to an increasing demand for more efficient and accurate information retrieval tools. Numerous techniques have been proposed and tried for improving the effectiveness of searching the World Wide Web for documents relevant to a given topic of interest. The specification of appropriate keywords and phrases by the user is crucial for the successful execution of a query as measured by the relevance of documents retrieved. Lack of users' knowledge an the search topic and their changing information needs often make it difficult for them to find suitable keywords or phrases for a query. This results in searches that fail to cover all likely aspects of the topic of interest. We describe a scheme that attempts to remedy this situation by automatically expanding the user query through the analysis of initially retrieved documents. Experimental results to demonstrate the effectiveness of the query expansion scheure are presented.
  4. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.05
    0.04507981 = product of:
      0.13523942 = sum of:
        0.09268724 = weight(_text_:computer in 1352) [ClassicSimilarity], result of:
          0.09268724 = score(doc=1352,freq=4.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.5710171 = fieldWeight in 1352, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=1352)
        0.04255218 = product of:
          0.08510436 = sum of:
            0.08510436 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.08510436 = score(doc=1352,freq=4.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
    Series
    Lecture notes in computer science; 2539
  5. Smeaton, A.F.; Rijsbergen, C.J. van: ¬The retrieval effects of query expansion on a feedback document retrieval system (1983) 0.04
    0.044626735 = product of:
      0.1338802 = sum of:
        0.09175568 = weight(_text_:computer in 2134) [ClassicSimilarity], result of:
          0.09175568 = score(doc=2134,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.56527805 = fieldWeight in 2134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.109375 = fieldNorm(doc=2134)
        0.04212451 = product of:
          0.08424902 = sum of:
            0.08424902 = weight(_text_:22 in 2134) [ClassicSimilarity], result of:
              0.08424902 = score(doc=2134,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.5416616 = fieldWeight in 2134, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2134)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    30. 3.2001 13:32:22
    Source
    Computer journal. 26(1983), S.239-246
  6. Gábor, K.; Zargayouna, H.; Tellier, I.; Buscaldi, D.; Charnois, T.: ¬A typology of semantic relations dedicated to scientific literature analysis (2016) 0.03
    0.034674477 = product of:
      0.10402343 = sum of:
        0.067437425 = weight(_text_:wide in 2933) [ClassicSimilarity], result of:
          0.067437425 = score(doc=2933,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 2933, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
        0.036585998 = weight(_text_:web in 2933) [ClassicSimilarity], result of:
          0.036585998 = score(doc=2933,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 2933, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
      0.33333334 = coord(2/6)
    
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  7. Wolfram, D.; Xie, H.I.: Traditional IR for web users : a context for general audience digital libraries (2002) 0.03
    0.033478435 = product of:
      0.1004353 = sum of:
        0.04816959 = weight(_text_:wide in 2589) [ClassicSimilarity], result of:
          0.04816959 = score(doc=2589,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 2589, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2589)
        0.052265707 = weight(_text_:web in 2589) [ClassicSimilarity], result of:
          0.052265707 = score(doc=2589,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.36057037 = fieldWeight in 2589, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2589)
      0.33333334 = coord(2/6)
    
    Abstract
    The emergence of general audience digital libraries (GADLs) defines a context that represents a hybrid of both "traditional" IR, using primarily bibliographic resources provided by database vendors, and "popular" IR, exemplified by public search systems available on the World Wide Web. Findings of a study investigating end-user searching and response to a GADL are reported. Data collected from a Web-based end-user survey and data logs of resource usage for a Web-based GADL were analyzed for user characteristics, patterns of access and use, and user feedback. Cross-tabulations using respondent demographics revealed several key differences in how the system was used and valued by users of different age groups. Older users valued the service more than younger users and engaged in different searching and viewing behaviors. The GADL more closely resembles traditional retrieval systems in terms of content and purpose of use, but is more similar to popular IR systems in terms of user behavior and accessibility. A model that defines the dual context of the GADL environment is derived from the data analysis and existing IR models in general and other specific contexts. The authors demonstrate the distinguishing characteristics of this IR context, and discuss implications for the development and evaluation of future GADLs to accommodate a variety of user needs and expectations.
  8. Rekabsaz, N. et al.: Toward optimized multimodal concept indexing (2016) 0.03
    0.031876236 = product of:
      0.09562871 = sum of:
        0.06553978 = weight(_text_:computer in 2751) [ClassicSimilarity], result of:
          0.06553978 = score(doc=2751,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 2751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=2751)
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 2751) [ClassicSimilarity], result of:
              0.06017787 = score(doc=2751,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 2751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2751)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    1. 2.2016 18:25:22
    Series
    Lecture notes in computer science ; 9398
  9. Kozikowski, P. et al.: Support of part-whole relations in query answering (2016) 0.03
    0.031876236 = product of:
      0.09562871 = sum of:
        0.06553978 = weight(_text_:computer in 2754) [ClassicSimilarity], result of:
          0.06553978 = score(doc=2754,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 2754, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=2754)
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 2754) [ClassicSimilarity], result of:
              0.06017787 = score(doc=2754,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 2754, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2754)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    1. 2.2016 18:25:22
    Series
    Lecture notes in computer science ; 9398
  10. Marx, E. et al.: Exploring term networks for semantic search over RDF knowledge graphs (2016) 0.03
    0.031876236 = product of:
      0.09562871 = sum of:
        0.06553978 = weight(_text_:computer in 3279) [ClassicSimilarity], result of:
          0.06553978 = score(doc=3279,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 3279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=3279)
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 3279) [ClassicSimilarity], result of:
              0.06017787 = score(doc=3279,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 3279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3279)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  11. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.03
    0.031876236 = product of:
      0.09562871 = sum of:
        0.06553978 = weight(_text_:computer in 3280) [ClassicSimilarity], result of:
          0.06553978 = score(doc=3280,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.06017787 = score(doc=3280,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  12. Surfing versus Drilling for knowledge in science : When should you use your computer? When should you use your brain? (2018) 0.03
    0.027980987 = product of:
      0.08394296 = sum of:
        0.03853567 = weight(_text_:wide in 4564) [ClassicSimilarity], result of:
          0.03853567 = score(doc=4564,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 4564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4564)
        0.045407288 = weight(_text_:computer in 4564) [ClassicSimilarity], result of:
          0.045407288 = score(doc=4564,freq=6.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.2797401 = fieldWeight in 4564, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.03125 = fieldNorm(doc=4564)
      0.33333334 = coord(2/6)
    
    Abstract
    For this second Special Issue of Infozine, we have invited students, teachers, researchers, and software developers to share their opinions about one or the other aspect of this broad topic: how to balance drilling (for depth) vs. surfing (for breadth) in scientific learning, teaching, research, and software design - and how the modern digital-liberal system affects our ability to strike this balance. This special issue is meant to provide a wide and unbiased spectrum of possible viewpoints on the topic, helping readers to define lucidly their own position and information use behavior.
    Content
    Editorial: Surfing versus Drilling for Knowledge in Science: When should you use your computer? When should you use your brain? Blaise Pascal: Les deux infinis - The two infinities / Philippe Hünenberger and Oliver Renn - "Surfing" vs. "drilling" in the modern scientific world / Antonio Loprieno - Of millimeter paper and machine learning / Philippe Hünenberger - From one to many, from breadth to depth - industrializing research / Janne Soetbeer - "Deep drilling" requires "surfing" / Gerd Folkers and Laura Folkers - Surfing vs. drilling in science: A delicate balance / Alzbeta Kubincová - Digital trends in academia - for the sake of critical thinking or comfort? / Leif-Thore Deck - I diagnose, therefore I am a Doctor? Will drilling computer software replace human doctors in the future? / Yi Zheng - Surfing versus drilling in fundamental research / Wilfred van Gunsteren - Using brain vs. brute force in computational studies of biological systems / Arieh Warshel - Laboratory literature boards in the digital age / Jeffrey Bode - Research strategies in computational chemistry / Sereina Riniker - Surfing on the hype waves or drilling deep for knowledge? A perspective from industry / Nadine Schneider and Nikolaus Stiefl - The use and purpose of articles and scientists / Philip Mark Lund - Can you look at papers like artwork? / Oliver Renn - Dynamite fishing in the data swamp / Frank Perabo 34 Streetlights, augmented intelligence, and information discovery / Jeffrey Saffer and Vicki Burnett - "Yes Dave. Happy to do that for you." Why AI, machine learning, and blockchain will lead to deeper "drilling" / Michiel Kolman and Sjors de Heuvel - Trends in scientific document search ( Stefan Geißler - Power tools for text mining / Jane Reed 42 Publishing and patenting: Navigating the differences to ensure search success / Paul Peters
  13. Vallet, D.; Fernández, M.; Castells, P.: ¬An ontology-based information retrieval model (2005) 0.03
    0.027890932 = product of:
      0.08367279 = sum of:
        0.04434892 = weight(_text_:web in 4708) [ClassicSimilarity], result of:
          0.04434892 = score(doc=4708,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 4708, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.039323866 = weight(_text_:computer in 4708) [ClassicSimilarity], result of:
          0.039323866 = score(doc=4708,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 4708, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
      0.33333334 = coord(2/6)
    
    Abstract
    Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontologybased KBs to improve search over large document repositories. Our approach includes an ontology-based scheme for the semi-automatic annotation of documents, and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with keyword-based search to achieve tolerance to KB incompleteness. Our proposal is illustrated with sample experiments showing improvements with respect to keyword-based search, and providing ground for further research and discussion.
    Series
    Lecture Notes in Computer Science ; 3532
    Source
    The Semantic Web: research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings. Eds.: A. Gómez-Pérez u. J. Euzenat
  14. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.03
    0.027487947 = product of:
      0.08246384 = sum of:
        0.036585998 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
          0.036585998 = score(doc=4471,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 4471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.04587784 = weight(_text_:computer in 4471) [ClassicSimilarity], result of:
          0.04587784 = score(doc=4471,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 4471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
      0.33333334 = coord(2/6)
    
    Series
    Communications in computer and information science; vol.475
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
  15. Bhansali, D.; Desai, H.; Deulkar, K.: ¬A study of different ranking approaches for semantic search (2015) 0.03
    0.026011107 = product of:
      0.07803332 = sum of:
        0.045263432 = weight(_text_:web in 2696) [ClassicSimilarity], result of:
          0.045263432 = score(doc=2696,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 2696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
        0.03276989 = weight(_text_:computer in 2696) [ClassicSimilarity], result of:
          0.03276989 = score(doc=2696,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 2696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2696)
      0.33333334 = coord(2/6)
    
    Abstract
    Search Engines have become an integral part of our day to day life. Our reliance on search engines increases with every passing day. With the amount of data available on Internet increasing exponentially, it becomes important to develop new methods and tools that help to return results relevant to the queries and reduce the time spent on searching. The results should be diverse but at the same time should return results focused on the queries asked. Relation Based Page Rank [4] algorithms are considered to be the next frontier in improvement of Semantic Web Search. The probability of finding relevance in the search results as posited by the user while entering the query is used to measure the relevance. However, its application is limited by the complexity of determining relation between the terms and assigning explicit meaning to each term. Trust Rank is one of the most widely used ranking algorithms for semantic web search. Few other ranking algorithms like HITS algorithm, PageRank algorithm are also used for Semantic Web Searching. In this paper, we will provide a comparison of few ranking approaches.
    Source
    International journal of computer applications. 129(2015) no.5, S12-15
  16. Melucci, M.: Contextual search : a computational framework (2012) 0.02
    0.02476748 = product of:
      0.07430244 = sum of:
        0.04816959 = weight(_text_:wide in 4913) [ClassicSimilarity], result of:
          0.04816959 = score(doc=4913,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 4913, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4913)
        0.026132854 = weight(_text_:web in 4913) [ClassicSimilarity], result of:
          0.026132854 = score(doc=4913,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 4913, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4913)
      0.33333334 = coord(2/6)
    
    Abstract
    The growing availability of data in electronic form, the expansion of the World Wide Web and the accessibility of computational methods for large-scale data processing have allowed researchers in Information Retrieval (IR) to design systems which can effectively and efficiently constrain search within the boundaries given by context, thus transforming classical search into contextual search. Contextual Search: A Computational Framework introduces contextual search within a computational framework based on contextual variables, contextual factors and statistical models. It describes how statistical models can process contextual variables to infer the contextual factors underlying the current search context. It also provides background to the subject by: placing it among other surveys on relevance, interaction, context, and behaviour; providing a description of the contextual variables used for implementing the statistical models which represent and predict relevance and contextual factors; and providing an overview of the evaluation methodologies and findings relevant to this subject. Contextual Search: A Computational Framework is a highly recommended read, both for beginners who are embarking on research in this area and as a useful reference for established IR researchers.
  17. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.02
    0.02476748 = product of:
      0.07430244 = sum of:
        0.04816959 = weight(_text_:wide in 1338) [ClassicSimilarity], result of:
          0.04816959 = score(doc=1338,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 1338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1338)
        0.026132854 = weight(_text_:web in 1338) [ClassicSimilarity], result of:
          0.026132854 = score(doc=1338,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 1338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1338)
      0.33333334 = coord(2/6)
    
    Abstract
    A user's query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques model syntagmatic associations that infer two terms co-occur more often than by chance in natural language. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches to query expansion and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process improves retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
  18. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.02
    0.02372249 = product of:
      0.07116747 = sum of:
        0.059131898 = weight(_text_:web in 1626) [ClassicSimilarity], result of:
          0.059131898 = score(doc=1626,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 1626, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.012035574 = product of:
          0.024071148 = sum of:
            0.024071148 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.024071148 = score(doc=1626,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Theme
    Semantic Web
  19. Wang, Y.-H.; Jhuo, P.-S.: ¬A semantic faceted search with rule-based inference (2009) 0.02
    0.023561096 = product of:
      0.070683286 = sum of:
        0.031359423 = weight(_text_:web in 540) [ClassicSimilarity], result of:
          0.031359423 = score(doc=540,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.039323866 = weight(_text_:computer in 540) [ClassicSimilarity], result of:
          0.039323866 = score(doc=540,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
      0.33333334 = coord(2/6)
    
    Abstract
    Semantic Search has become an active research of Semantic Web in recent years. The classification methodology plays a pretty critical role in the beginning of search process to disambiguate irrelevant information. However, the applications related to Folksonomy suffer from many obstacles. This study attempts to eliminate the problems resulted from Folksonomy using existing semantic technology. We also focus on how to effectively integrate heterogeneous ontologies over the Internet to acquire the integrity of domain knowledge. A faceted logic layer is abstracted in order to strengthen category framework and organize existing available ontologies according to a series of steps based on the methodology of faceted classification and ontology construction. The result showed that our approach can facilitate the integration of inconsistent or even heterogeneous ontologies. This paper also generalizes the principles of picking appropriate facets with which our facet browser completely complies so that better semantic search result can be obtained.
    Source
    Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I, IMECS 2009, March 18 - 20, 2009, Hong Kong
  20. Fieldhouse, M.; Hancock-Beaulieu, M.: ¬The design of a graphical user interface for a highly interactive information retrieval system (1996) 0.02
    0.022313368 = product of:
      0.0669401 = sum of:
        0.04587784 = weight(_text_:computer in 6958) [ClassicSimilarity], result of:
          0.04587784 = score(doc=6958,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.28263903 = fieldWeight in 6958, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6958)
        0.021062255 = product of:
          0.04212451 = sum of:
            0.04212451 = weight(_text_:22 in 6958) [ClassicSimilarity], result of:
              0.04212451 = score(doc=6958,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.2708308 = fieldWeight in 6958, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6958)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon

Years

Languages

  • e 82
  • d 18
  • f 1
  • More… Less…

Types

  • a 85
  • el 15
  • m 11
  • r 1
  • s 1
  • x 1
  • More… Less…