Search (307 results, page 1 of 16)

  • × year_i:[2000 TO 2010}
  • × type_ss:"el"
  1. Austin, D.: How Google finds your needle in the Web's haystack : as we'll see, the trick is to ask the web itself to rank the importance of pages... (2006) 0.09
    0.09150508 = product of:
      0.13725762 = sum of:
        0.033718713 = weight(_text_:wide in 93) [ClassicSimilarity], result of:
          0.033718713 = score(doc=93,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.171337 = fieldWeight in 93, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=93)
        0.05174041 = weight(_text_:web in 93) [ClassicSimilarity], result of:
          0.05174041 = score(doc=93,freq=16.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.35694647 = fieldWeight in 93, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=93)
        0.02293892 = weight(_text_:computer in 93) [ClassicSimilarity], result of:
          0.02293892 = score(doc=93,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.14131951 = fieldWeight in 93, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02734375 = fieldNorm(doc=93)
        0.028859572 = product of:
          0.057719145 = sum of:
            0.057719145 = weight(_text_:programs in 93) [ClassicSimilarity], result of:
              0.057719145 = score(doc=93,freq=2.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.22416902 = fieldWeight in 93, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=93)
          0.5 = coord(1/2)
      0.6666667 = coord(4/6)
    
    Abstract
    Imagine a library containing 25 billion documents but with no centralized organization and no librarians. In addition, anyone may add a document at any time without telling anyone. You may feel sure that one of the documents contained in the collection has a piece of information that is vitally important to you, and, being impatient like most of us, you'd like to find it in a matter of seconds. How would you go about doing it? Posed in this way, the problem seems impossible. Yet this description is not too different from the World Wide Web, a huge, highly-disorganized collection of documents in many different formats. Of course, we're all familiar with search engines (perhaps you found this article using one) so we know that there is a solution. This article will describe Google's PageRank algorithm and how it returns pages from the web's collection of 25 billion documents that match search criteria so well that "google" has become a widely used verb. Most search engines, including Google, continually run an army of computer programs that retrieve pages from the web, index the words in each document, and store this information in an efficient format. Each time a user asks for a web search using a search phrase, such as "search engine," the search engine determines all the pages on the web that contains the words in the search phrase. (Perhaps additional information such as the distance between the words "search" and "engine" will be noted as well.) Here is the problem: Google now claims to index 25 billion pages. Roughly 95% of the text in web pages is composed from a mere 10,000 words. This means that, for most searches, there will be a huge number of pages containing the words in the search phrase. What is needed is a means of ranking the importance of the pages that fit the search criteria so that the pages can be sorted with the most important pages at the top of the list. One way to determine the importance of pages is to use a human-generated ranking. For instance, you may have seen pages that consist mainly of a large number of links to other resources in a particular area of interest. Assuming the person maintaining this page is reliable, the pages referenced are likely to be useful. Of course, the list may quickly fall out of date, and the person maintaining the list may miss some important pages, either unintentionally or as a result of an unstated bias. Google's PageRank algorithm assesses the importance of web pages without human evaluation of the content. In fact, Google feels that the value of its service is largely in its ability to provide unbiased results to search queries; Google claims, "the heart of our software is PageRank." As we'll see, the trick is to ask the web itself to rank the importance of pages.
  2. Weller, K.: Ontologien: Stand und Entwicklung der Semantik für WorldWideWeb (2009) 0.07
    0.06968716 = product of:
      0.13937432 = sum of:
        0.04816959 = weight(_text_:wide in 4425) [ClassicSimilarity], result of:
          0.04816959 = score(doc=4425,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 4425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4425)
        0.05843484 = weight(_text_:web in 4425) [ClassicSimilarity], result of:
          0.05843484 = score(doc=4425,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.40312994 = fieldWeight in 4425, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4425)
        0.03276989 = weight(_text_:computer in 4425) [ClassicSimilarity], result of:
          0.03276989 = score(doc=4425,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 4425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4425)
      0.5 = coord(3/6)
    
    Abstract
    Die Idee zu einem semantischen Web wurde maßgeblich geprägt (wenn auch nicht initiiert) durch eine Veröffentlichung von Tim Berners Lee, James Hendler und Ora Lassila im Jahre 2001. Darin skizzieren die Autoren ihre Version von einem erweiterten und verbesserten World Wide Web: Daten sollen so aufbereitet werden, dass nicht nur Menschen diese lesen können, sondern dass auch Computer in die Lage versetzt werden, diese zu verarbeiten und sinnvoll zu kombinieren. Sie beschreiben ein Szenario, in dem "Web agents" dem Nutzer bei der Durchführung komplexer Suchanfragen helfen, wie beispielsweise "finde einen Arzt, der eine bestimmte Behandlung anbietet, dessen Praxis in der Nähe meiner Wohnung liegt und dessen Öffnungszeiten mit meinem Terminkalender zusammenpassen". Die große Herausforderung liegt hierbei darin, dass Informationen, die über mehrere Webseiten verteilt sind, gesammelt und zu einer sinnvollen Antwort kombiniert werden müssen. Man spricht dabei vom Problem der Informationsintegration (Information Integration). Diese Vision der weltweiten Datenintegration in einem Semantic Web wurde seither vielfach diskutiert, erweitert und modifiziert, an der technischen Realisation arbeitet eine Vielzahl verschiedener Forschungseinrichtungen. Einigkeit besteht dahingehend, dass eine solche Idee nur mit der Hilfe neuer bedeutungstragender Metadaten verwirklicht werden kann. Benötigt werden also neue Ansätze zur Indexierung von Web Inhalten, die eine Suche über Wortbedeutungen und nicht über bloße Zeichenketten ermöglichen können. So soll z.B. erkannt werden, dass es sich bei "Heinrich Heine" um den Namen einer Person handelt und bei "Düsseldorf" um den Namen einer Stadt. Darüber hinaus sollen auch Verbindungen zwischen einzelnen Informationseinheiten festgehalten werden, beispielsweise dass Heinrich Heine in Düsseldorf wohnte. Wenn solche semantischen Relationen konsequent eingesetzt werden, können sie in vielen Fällen ausgenutzt werden, um neue Schlussfolgerungen zu ziehen.
  3. Cohen, S.; Fereira, J.; Horne, A.; Kibbee, B.; Mistlebauer, H.; Smith, A.: MyLibrary : personalized electronic services in the Cornell University Library (2000) 0.06
    0.055749726 = product of:
      0.11149945 = sum of:
        0.03853567 = weight(_text_:wide in 1232) [ClassicSimilarity], result of:
          0.03853567 = score(doc=1232,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.1958137 = fieldWeight in 1232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=1232)
        0.04674787 = weight(_text_:web in 1232) [ClassicSimilarity], result of:
          0.04674787 = score(doc=1232,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.32250395 = fieldWeight in 1232, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1232)
        0.02621591 = weight(_text_:computer in 1232) [ClassicSimilarity], result of:
          0.02621591 = score(doc=1232,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.16150802 = fieldWeight in 1232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.03125 = fieldNorm(doc=1232)
      0.5 = coord(3/6)
    
    Abstract
    Library users who are Web users expect customization and interactivity. MyLibrary is a Cornell University Library initiative to provide numerous personalized library services to Cornell University students, faculty, and staff. Currently, it consists of MyLinks, a tool for collecting and organizing resources for private use by a patron, and MyUpdates, a tool to help scholars stay informed of new resources provided by the library. This article provides an overview of the MyLibrary project, explains the rationale for the development of the service in the library, briefly discusses the hardware and software used for the service, and suggests some of the directions for future developments of the MyLibrary system. MyYahoo!, MyCNN, MyBookmarks, MyThis and MyThat. Internet users have demanded a personal face to the World Wide Web, and Web portals and information providers have responded. Why not MyLibrary? The Library and Information Technology Association (LITA) has defined MyLibrary-like services as the number one trend "worth keeping an eye on". "Library users who are Web users, a growing group," the experts agree, "expect customization, interactivity, and customer support. Approaches that are library-focused instead of user-focused will be increasingly irrelevant." In response to the needs of web-savvy patrons, the Cornell University Library (CUL) implemented a MyLibrary service this year, making finding and using library resources easier than ever. MyLibrary is an "umbrella" service for two new products: MyLinks and MyUpdates. Other products are in development. MyLibrary's MyLinks is a tool for collecting and organizing resources for private use by a patron. These resources may or may not be "official" Cornell University Library resources. Our patrons best understand this service as a "traveling set of bookmarks". Most patrons of the library use a variety of machines to access Internet resources. For example, you may have a computer at home and one at work. Why should you create your bookmarks twice, or carry around a diskette containing your bookmarks? Students who rely on lab computers never know which machine they will use next. With MyLinks, a patron's favorite sites are just a click away from any machine.
  4. Resource Description Framework (RDF) (2004) 0.05
    0.053565495 = product of:
      0.16069648 = sum of:
        0.07707134 = weight(_text_:wide in 3063) [ClassicSimilarity], result of:
          0.07707134 = score(doc=3063,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.3916274 = fieldWeight in 3063, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=3063)
        0.08362513 = weight(_text_:web in 3063) [ClassicSimilarity], result of:
          0.08362513 = score(doc=3063,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5769126 = fieldWeight in 3063, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3063)
      0.33333334 = coord(2/6)
    
    Abstract
    The Resource Description Framework (RDF) integrates a variety of applications from library catalogs and world-wide directories to syndication and aggregation of news, software, and content to personal collections of music, photos, and events using XML as an interchange syntax. The RDF specifications provide a lightweight ontology system to support the exchange of knowledge on the Web. The W3C Semantic Web Activity Statement explains W3C's plans for RDF, including the RDF Core WG, Web Ontology and the RDF Interest Group.
    Theme
    Semantic Web
  5. Boldi, P.; Santini, M.; Vigna, S.: PageRank as a function of the damping factor (2005) 0.05
    0.050085746 = product of:
      0.10017149 = sum of:
        0.04816959 = weight(_text_:wide in 2564) [ClassicSimilarity], result of:
          0.04816959 = score(doc=2564,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.24476713 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2564)
        0.036957435 = weight(_text_:web in 2564) [ClassicSimilarity], result of:
          0.036957435 = score(doc=2564,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25496176 = fieldWeight in 2564, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2564)
        0.0150444675 = product of:
          0.030088935 = sum of:
            0.030088935 = weight(_text_:22 in 2564) [ClassicSimilarity], result of:
              0.030088935 = score(doc=2564,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.19345059 = fieldWeight in 2564, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2564)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    PageRank is defined as the stationary state of a Markov chain. The chain is obtained by perturbing the transition matrix induced by a web graph with a damping factor alpha that spreads uniformly part of the rank. The choice of alpha is eminently empirical, and in most cases the original suggestion alpha=0.85 by Brin and Page is still used. Recently, however, the behaviour of PageRank with respect to changes in alpha was discovered to be useful in link-spam detection. Moreover, an analytical justification of the value chosen for alpha is still missing. In this paper, we give the first mathematical analysis of PageRank when alpha changes. In particular, we show that, contrarily to popular belief, for real-world graphs values of alpha close to 1 do not give a more meaningful ranking. Then, we give closed-form formulae for PageRank derivatives of any order, and an extension of the Power Method that approximates them with convergence O(t**k*alpha**t) for the k-th derivative. Finally, we show a tight connection between iterated computation and analytical behaviour by proving that the k-th iteration of the Power Method gives exactly the PageRank value obtained using a Maclaurin polynomial of degree k. The latter result paves the way towards the application of analytical methods to the study of PageRank.
    Date
    16. 1.2016 10:22:28
    Source
    http://vigna.di.unimi.it/ftp/papers/PageRankAsFunction.pdf [Proceedings of the ACM World Wide Web Conference (WWW), 2005]
  6. Bechhofer, S.; Harmelen, F. van; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference (2004) 0.05
    0.049748734 = product of:
      0.1492462 = sum of:
        0.067437425 = weight(_text_:wide in 4684) [ClassicSimilarity], result of:
          0.067437425 = score(doc=4684,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.342674 = fieldWeight in 4684, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4684)
        0.081808776 = weight(_text_:web in 4684) [ClassicSimilarity], result of:
          0.081808776 = score(doc=4684,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5643819 = fieldWeight in 4684, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4684)
      0.33333334 = coord(2/6)
    
    Abstract
    The Web Ontology Language OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web Ontology Language. This document contains a structured informal description of the full set of OWL language constructs and is meant to serve as a reference for OWL users who want to construct OWL ontologies.
    Theme
    Semantic Web
  7. Reiner, U.: Automatische DDC-Klassifizierung bibliografischer Titeldatensätze der Deutschen Nationalbibliografie (2009) 0.05
    0.048049595 = product of:
      0.09609919 = sum of:
        0.05449767 = weight(_text_:wide in 3284) [ClassicSimilarity], result of:
          0.05449767 = score(doc=3284,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.2769224 = fieldWeight in 3284, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=3284)
        0.029565949 = weight(_text_:web in 3284) [ClassicSimilarity], result of:
          0.029565949 = score(doc=3284,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2039694 = fieldWeight in 3284, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3284)
        0.012035574 = product of:
          0.024071148 = sum of:
            0.024071148 = weight(_text_:22 in 3284) [ClassicSimilarity], result of:
              0.024071148 = score(doc=3284,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.15476047 = fieldWeight in 3284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3284)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Die Menge der zu klassifizierenden Veröffentlichungen steigt spätestens seit der Existenz des World Wide Web schneller an, als sie intellektuell sachlich erschlossen werden kann. Daher werden Verfahren gesucht, um die Klassifizierung von Textobjekten zu automatisieren oder die intellektuelle Klassifizierung zumindest zu unterstützen. Seit 1968 gibt es Verfahren zur automatischen Dokumentenklassifizierung (Information Retrieval, kurz: IR) und seit 1992 zur automatischen Textklassifizierung (ATC: Automated Text Categorization). Seit immer mehr digitale Objekte im World Wide Web zur Verfügung stehen, haben Arbeiten zur automatischen Textklassifizierung seit ca. 1998 verstärkt zugenommen. Dazu gehören seit 1996 auch Arbeiten zur automatischen DDC-Klassifizierung bzw. RVK-Klassifizierung von bibliografischen Titeldatensätzen und Volltextdokumenten. Bei den Entwicklungen handelt es sich unseres Wissens bislang um experimentelle und keine im ständigen Betrieb befindlichen Systeme. Auch das VZG-Projekt Colibri/DDC ist seit 2006 u. a. mit der automatischen DDC-Klassifizierung befasst. Die diesbezüglichen Untersuchungen und Entwicklungen dienen zur Beantwortung der Forschungsfrage: "Ist es möglich, eine inhaltlich stimmige DDC-Titelklassifikation aller GVK-PLUS-Titeldatensätze automatisch zu erzielen?"
    Date
    22. 1.2010 14:41:24
  8. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z.: DBpedia: a nucleus for a Web of open data (2007) 0.05
    0.046163693 = product of:
      0.13849108 = sum of:
        0.09916721 = weight(_text_:web in 4260) [ClassicSimilarity], result of:
          0.09916721 = score(doc=4260,freq=20.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6841342 = fieldWeight in 4260, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4260)
        0.039323866 = weight(_text_:computer in 4260) [ClassicSimilarity], result of:
          0.039323866 = score(doc=4260,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 4260, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=4260)
      0.33333334 = coord(2/6)
    
    Abstract
    DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. DBpedia allows you to ask sophisticated queries against datasets derived from Wikipedia and to link other datasets on the Web to Wikipedia data. We describe the extraction of the DBpedia datasets, and how the resulting information is published on the Web for human- and machineconsumption. We describe some emerging applications from the DBpedia community and show how website authors can facilitate DBpedia content within their sites. Finally, we present the current status of interlinking DBpedia with other open datasets on the Web and outline how DBpedia could serve as a nucleus for an emerging Web of open data.
    Series
    Lecture notes in computer science ; 4825
    Source
    ¬The Semantic Web : 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007 : proceedings. Ed.: Karl Aberer et al
    Theme
    Semantic Web
  9. RDF Primer : W3C Recommendation 10 February 2004 (2004) 0.05
    0.045401078 = product of:
      0.13620323 = sum of:
        0.07707134 = weight(_text_:wide in 3064) [ClassicSimilarity], result of:
          0.07707134 = score(doc=3064,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.3916274 = fieldWeight in 3064, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=3064)
        0.059131898 = weight(_text_:web in 3064) [ClassicSimilarity], result of:
          0.059131898 = score(doc=3064,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 3064, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3064)
      0.33333334 = coord(2/6)
    
    Abstract
    The Resource Description Framework (RDF) is a language for representing information about resources in the World Wide Web. This Primer is designed to provide the reader with the basic knowledge required to effectively use RDF. It introduces the basic concepts of RDF and describes its XML syntax. It describes how to define RDF vocabularies using the RDF Vocabulary Description Language, and gives an overview of some deployed RDF applications. It also describes the content and purpose of other RDF specification documents.
    Theme
    Semantic Web
  10. Dushay, N.: Visualizing bibliographic metadata : a virtual (book) spine viewer (2004) 0.04
    0.044273444 = product of:
      0.08854689 = sum of:
        0.028901752 = weight(_text_:wide in 1197) [ClassicSimilarity], result of:
          0.028901752 = score(doc=1197,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.14686027 = fieldWeight in 1197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1197)
        0.015679711 = weight(_text_:web in 1197) [ClassicSimilarity], result of:
          0.015679711 = score(doc=1197,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.108171105 = fieldWeight in 1197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1197)
        0.043965418 = weight(_text_:computer in 1197) [ClassicSimilarity], result of:
          0.043965418 = score(doc=1197,freq=10.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.2708572 = fieldWeight in 1197, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1197)
      0.5 = coord(3/6)
    
    Abstract
    User interfaces for digital information discovery often require users to click around and read a lot of text in order to find the text they want to read-a process that is often frustrating and tedious. This is exacerbated because of the limited amount of text that can be displayed on a computer screen. To improve the user experience of computer mediated information discovery, information visualization techniques are applied to the digital library context, while retaining traditional information organization concepts. In this article, the "virtual (book) spine" and the virtual spine viewer are introduced. The virtual spine viewer is an application which allows users to visually explore large information spaces or collections while also allowing users to hone in on individual resources of interest. The virtual spine viewer introduced here is an alpha prototype, presented to promote discussion and further work. Information discovery changed radically with the introduction of computerized library access catalogs, the World Wide Web and its search engines, and online bookstores. Yet few instances of these technologies provide a user experience analogous to walking among well-organized, well-stocked bookshelves-which many people find useful as well as pleasurable. To put it another way, many of us have heard or voiced complaints about the paucity of "online browsing"-but what does this really mean? In traditional information spaces such as libraries, often we can move freely among the books and other resources. When we walk among organized, labeled bookshelves, we get a sense of the information space-we take in clues, perhaps unconsciously, as to the scope of the collection, the currency of resources, the frequency of their use, etc. We also enjoy unexpected discoveries such as finding an interesting resource because library staff deliberately located it near similar resources, or because it was miss-shelved, or because we saw it on a bookshelf on the way to the water fountain.
    When our experience of information discovery is mediated by a computer, we neither move ourselves nor the monitor. We have only the computer's monitor to view, and the keyboard and/or mouse to manipulate what is displayed there. Computer interfaces often reduce our ability to get a sense of the contents of a library: we don't perceive the scope of the library: its breadth, (the quantity of materials/information), its density (how full the shelves are, how thorough the collection is for individual topics), or the general audience for the materials (e.g., whether the materials are appropriate for middle school students, college professors, etc.). Additionally, many computer interfaces for information discovery require users to scroll through long lists, to click numerous navigational links and to read a lot of text to find the exact text they want to read. Text features of resources are almost always presented alphabetically, and the number of items in these alphabetical lists sometimes can be very long. Alphabetical ordering is certainly an improvement over no ordering, but it generally has no bearing on features with an inherent non-alphabetical ordering (e.g., dates of historical events), nor does it necessarily group similar items together. Alphabetical ordering of resources is analogous to one of the most familiar complaints about dictionaries: sometimes you need to know how to spell a word in order to look up its correct spelling in the dictionary. Some have used technology to replicate the appearance of physical libraries, presenting rooms of bookcases and shelves of book spines in virtual 3D environments. This approach presents a problem, as few book spines can be displayed legibly on a monitor screen. This article examines the role of book spines, call numbers, and other traditional organizational and information discovery concepts, and integrates this knowledge with information visualization techniques to show how computers and monitors can meet or exceed similar information discovery methods. The goal is to tap the unique potentials of current information visualization approaches in order to improve information discovery, offer new services, and most important of all, improve user satisfaction. We need to capitalize on what computers do well while bearing in mind their limitations. The intent is to design GUIs to optimize utility and provide a positive experience for the user.
  11. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.04
    0.042866588 = product of:
      0.085733175 = sum of:
        0.024084795 = weight(_text_:wide in 2467) [ClassicSimilarity], result of:
          0.024084795 = score(doc=2467,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.122383565 = fieldWeight in 2467, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.045263432 = weight(_text_:web in 2467) [ClassicSimilarity], result of:
          0.045263432 = score(doc=2467,freq=24.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 2467, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.016384944 = weight(_text_:computer in 2467) [ClassicSimilarity], result of:
          0.016384944 = score(doc=2467,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.100942515 = fieldWeight in 2467, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
      0.5 = coord(3/6)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  12. Hüsken, P.: Information Retrieval im Semantic Web (2006) 0.04
    0.04264177 = product of:
      0.1279253 = sum of:
        0.057803504 = weight(_text_:wide in 4333) [ClassicSimilarity], result of:
          0.057803504 = score(doc=4333,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 4333, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
        0.07012181 = weight(_text_:web in 4333) [ClassicSimilarity], result of:
          0.07012181 = score(doc=4333,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.48375595 = fieldWeight in 4333, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
      0.33333334 = coord(2/6)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Theme
    Semantic Web
  13. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.04
    0.039814256 = product of:
      0.11944277 = sum of:
        0.08667288 = weight(_text_:web in 231) [ClassicSimilarity], result of:
          0.08667288 = score(doc=231,freq=22.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.59793836 = fieldWeight in 231, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
        0.03276989 = weight(_text_:computer in 231) [ClassicSimilarity], result of:
          0.03276989 = score(doc=231,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 231, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.33333334 = coord(2/6)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
    Series
    Lecture notes in computer science; 4825
    Source
    Proceeding ISWC'07/ASWC'07 : Proceedings of the 6th international The semantic web and 2nd Asian conference on Asian semantic web conference. Ed.: K. Aberer et al
    Theme
    Semantic Web
  14. Dambeck, H.: Wie Google mit Milliarden Unbekannten rechnet : Teil.1 (2009) 0.04
    0.03962797 = product of:
      0.11888391 = sum of:
        0.07707134 = weight(_text_:wide in 3081) [ClassicSimilarity], result of:
          0.07707134 = score(doc=3081,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.3916274 = fieldWeight in 3081, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=3081)
        0.041812565 = weight(_text_:web in 3081) [ClassicSimilarity], result of:
          0.041812565 = score(doc=3081,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2884563 = fieldWeight in 3081, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3081)
      0.33333334 = coord(2/6)
    
    Abstract
    Ein Leben ohne Suchmaschinen? Für alle, die viel im World Wide Web unterwegs sind, eine geradezu absurde Vorstellung. Bei der Berechnung der Trefferlisten nutzt Google ein erstaunlich simples mathematisches Verfahren, das sogar Milliarden von Internetseiten in den Griff bekommt.
  15. Thesaurus software (2001) 0.04
    0.039404403 = product of:
      0.11821321 = sum of:
        0.036585998 = weight(_text_:web in 6773) [ClassicSimilarity], result of:
          0.036585998 = score(doc=6773,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25239927 = fieldWeight in 6773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6773)
        0.081627205 = product of:
          0.16325441 = sum of:
            0.16325441 = weight(_text_:programs in 6773) [ClassicSimilarity], result of:
              0.16325441 = score(doc=6773,freq=4.0), product of:
                0.25748047 = queryWeight, product of:
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.044416238 = queryNorm
                0.6340458 = fieldWeight in 6773, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.79699 = idf(docFreq=364, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6773)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Members offer comments and suggest resources on programs for creating, maintaining, and publishing thesauri. Formerly a tool for writers and indexers, the thesaurus has taken on a new role as an essential component of the corporate information infrastructure. Many people are using word processor or database programs to create and maintain thesauri, while others are using specialized tools that perform consistency checks and offer special reporting capabilities. Some also use thesaurus modules integrated into another application, such as web publishing, content management, or e-commerce. This article includes material comes from our own experience, email responses from members, and comments from participants in our seminars and roundtables. There's also an introduction to thesauri in a corporate information management system
  16. OWL Web Ontology Language Test Cases (2004) 0.04
    0.039188966 = product of:
      0.11756689 = sum of:
        0.09349574 = weight(_text_:web in 4685) [ClassicSimilarity], result of:
          0.09349574 = score(doc=4685,freq=10.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6450079 = fieldWeight in 4685, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4685)
        0.024071148 = product of:
          0.048142295 = sum of:
            0.048142295 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.048142295 = score(doc=4685,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This document contains and presents test cases for the Web Ontology Language (OWL) approved by the Web Ontology Working Group. Many of the test cases illustrate the correct usage of the Web Ontology Language (OWL), and the formal meaning of its constructs. Other test cases illustrate the resolution of issues considered by the Working Group. Conformance for OWL documents and OWL document checkers is specified.
    Date
    14. 8.2011 13:33:22
    Theme
    Semantic Web
  17. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.04
    0.03843217 = product of:
      0.115296505 = sum of:
        0.073171996 = weight(_text_:web in 4643) [ClassicSimilarity], result of:
          0.073171996 = score(doc=4643,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.50479853 = fieldWeight in 4643, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=4643)
        0.04212451 = product of:
          0.08424902 = sum of:
            0.08424902 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.08424902 = score(doc=4643,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Date
    22. 9.2007 15:41:14
    Theme
    Semantic Web
  18. Pott, O.; Wielage, G.: XML Praxis und Referenz (2000) 0.04
    0.037795175 = product of:
      0.11338552 = sum of:
        0.06812209 = weight(_text_:wide in 6985) [ClassicSimilarity], result of:
          0.06812209 = score(doc=6985,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.34615302 = fieldWeight in 6985, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6985)
        0.045263432 = weight(_text_:web in 6985) [ClassicSimilarity], result of:
          0.045263432 = score(doc=6985,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3122631 = fieldWeight in 6985, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6985)
      0.33333334 = coord(2/6)
    
    Abstract
    Mit wohl einem der faszinierendsten und innovativsten Themen der Gegenwart und allernächsten Zukunft des Internet befasst sich dieses Buch: XML. Nie als HTML-Ersatz gedacht, erweitert es das Spektrum möglicher Anwendungen im Internet einerseits und schließt andererseits klaffende Lücken und technische Unzulänglichkeiten. Keine Frage: Wer sich als Web-Administrator, Autor eines privaten oder geschäftlichen Internet-Auftritts, Intranet-Verantwortlicher oder -Anwender mit HTML auseinandergesetzt hat, wird in Zukunft auch um XML nicht umhinkommen. Auch außerhalb der Online-Szene hat sich XML bereits heute als richtungsweisender Standard des Dokumentenmanagements etabliert. Dieses Buch bietet das komplette XML- und XSL-Wissen auf praxisnahem und hohem Niveau. Neben einer fundierten Einführung finden Sie das komplette Know-how, stets belegt und beschrieben durch Praxisanwendungen, das Sie für die Arbeit mit XML benötigen. Mit viel Engagement und Zeitaufwand haben uns Firmen, Freunde, Mitarbeiter und der Markt & Technik-Verlag unterstützt. Unser Dank gilt daher all jenen, die ihren Anteil am Gelingen dieses Buches hatten und noch haben werden. In der zweiten völlig aktualisierten und stark erweiterten Ausgabe dieses Buches konnten wir zahlreiche positive Rückmeldungen von Leserinnen und Lesern berücksichtigen. So greift dieses Buch jetzt auch neueste Entwicklungen aus der XML-Entwicklung auf. Dazu gehören beispielsweise SMIL und WML (WAP) oder die erst im Dezember 1999 veröffentlichte X-HTML Empfehlung.
    RSWK
    World wide web / Seite / Gestaltung (213)
    Subject
    World wide web / Seite / Gestaltung (213)
  19. Smith, A.G.: Search features of digital libraries (2000) 0.04
    0.037701976 = product of:
      0.11310592 = sum of:
        0.0817465 = weight(_text_:wide in 940) [ClassicSimilarity], result of:
          0.0817465 = score(doc=940,freq=4.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.4153836 = fieldWeight in 940, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=940)
        0.031359423 = weight(_text_:web in 940) [ClassicSimilarity], result of:
          0.031359423 = score(doc=940,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 940, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=940)
      0.33333334 = coord(2/6)
    
    Abstract
    Traditional on-line search services such as Dialog, DataStar and Lexis provide a wide range of search features (boolean and proximity operators, truncation, etc). This paper discusses the use of these features for effective searching, and argues that these features are required, regardless of advances in search engine technology. The literature on on-line searching is reviewed, identifying features that searchers find desirable for effective searching. A selective survey of current digital libraries available on the Web was undertaken, identifying which search features are present. The survey indicates that current digital libraries do not implement a wide range of search features. For instance: under half of the examples included controlled vocabulary, under half had proximity searching, only one enabled browsing of term indexes, and none of the digital libraries enable searchers to refine an initial search. Suggestions are made for enhancing the search effectiveness of digital libraries; for instance, by providing a full range of search operators, enabling browsing of search terms, enhancement of records with controlled vocabulary, enabling the refining of initial searches, etc.
  20. Radhakrishnan, A.: Swoogle : an engine for the Semantic Web (2007) 0.04
    0.037471574 = product of:
      0.11241472 = sum of:
        0.08619881 = weight(_text_:web in 4709) [ClassicSimilarity], result of:
          0.08619881 = score(doc=4709,freq=34.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.59466785 = fieldWeight in 4709, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4709)
        0.02621591 = weight(_text_:computer in 4709) [ClassicSimilarity], result of:
          0.02621591 = score(doc=4709,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.16150802 = fieldWeight in 4709, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.03125 = fieldNorm(doc=4709)
      0.33333334 = coord(2/6)
    
    Content
    "Swoogle, the Semantic web search engine, is a research project carried out by the ebiquity research group in the Computer Science and Electrical Engineering Department at the University of Maryland. It's an engine tailored towards finding documents on the semantic web. The whole research paper is available here. Semantic web is touted as the next generation of online content representation where the web documents are represented in a language that is not only easy for humans but is machine readable (easing the integration of data as never thought possible) as well. And the main elements of the semantic web include data model description formats such as Resource Description Framework (RDF), a variety of data interchange formats (e.g. RDF/XML, Turtle, N-Triples), and notations such as RDF Schema (RDFS), the Web Ontology Language (OWL), all of which are intended to provide a formal description of concepts, terms, and relationships within a given knowledge domain (Wikipedia). And Swoogle is an attempt to mine and index this new set of web documents. The engine performs crawling of semantic documents like most web search engines and the search is available as web service too. The engine is primarily written in Java with the PHP used for the front-end and MySQL for database. Swoogle is capable of searching over 10,000 ontologies and indexes more that 1.3 million web documents. It also computes the importance of a Semantic Web document. The techniques used for indexing are the more google-type page ranking and also mining the documents for inter-relationships that are the basis for the semantic web. For more information on how the RDF framework can be used to relate documents, read the link here. Being a research project, and with a non-commercial motive, there is not much hype around Swoogle. However, the approach to indexing of Semantic web documents is an approach that most engines will have to take at some point of time. When the Internet debuted, there were no specific engines available for indexing or searching. The Search domain only picked up as more and more content became available. One fundamental question that I've always wondered about it is - provided that the search engines return very relevant results for a query - how to ascertain that the documents are indeed the most relevant ones available. There is always an inherent delay in indexing of document. Its here that the new semantic documents search engines can close delay. Experimenting with the concept of Search in the semantic web can only bore well for the future of search technology."
    Source
    http://www.searchenginejournal.com/swoogle-an-engine-for-the-semantic-web/5469/
    Theme
    Semantic Web

Languages

  • e 235
  • d 61
  • a 4
  • el 2
  • More… Less…

Types

  • a 90
  • i 14
  • n 12
  • r 7
  • x 7
  • m 4
  • s 2
  • More… Less…