Search (24 results, page 1 of 2)

  • × author_ss:"Ding, Y."
  1. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.05
    0.050168302 = product of:
      0.12542075 = sum of:
        0.060152818 = weight(_text_:wide in 3290) [ClassicSimilarity], result of:
          0.060152818 = score(doc=3290,freq=2.0), product of:
            0.20479609 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046221454 = queryNorm
            0.29372054 = fieldWeight in 3290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3290)
        0.065267935 = weight(_text_:web in 3290) [ClassicSimilarity], result of:
          0.065267935 = score(doc=3290,freq=8.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.43268442 = fieldWeight in 3290, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3290)
      0.4 = coord(2/5)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  2. Ding, Y.; Chowdhury, G.; Foo, S.: Organsising keywords in a Web search environment : a methodology based on co-word analysis (2000) 0.04
    0.04252169 = product of:
      0.10630422 = sum of:
        0.060152818 = weight(_text_:wide in 105) [ClassicSimilarity], result of:
          0.060152818 = score(doc=105,freq=2.0), product of:
            0.20479609 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046221454 = queryNorm
            0.29372054 = fieldWeight in 105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=105)
        0.046151403 = weight(_text_:web in 105) [ClassicSimilarity], result of:
          0.046151403 = score(doc=105,freq=4.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.3059541 = fieldWeight in 105, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=105)
      0.4 = coord(2/5)
    
    Abstract
    The rapid development of the Internet and World Wide Web has caused some critical problem for information retrieval. Researchers have made several attempts to solve these problems. Thesauri and subject heading lists as traditional information retrieval tools have been criticised for their efficiency to tackle these newly emerging problems. This paper proposes an information retrieval tool generated by cocitation analysis, comprising keyword clusters with relationships based on the co-occurrences of keywords in the literature. Such a tool can play the role of an associative thesaurus that can provide information about the keywords in a domain that might be useful for information searching and query expansion
  3. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.02
    0.023996502 = product of:
      0.059991255 = sum of:
        0.038072966 = weight(_text_:web in 4188) [ClassicSimilarity], result of:
          0.038072966 = score(doc=4188,freq=2.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.25239927 = fieldWeight in 4188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4188)
        0.021918291 = product of:
          0.043836582 = sum of:
            0.043836582 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.043836582 = score(doc=4188,freq=2.0), product of:
                0.16185966 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
  4. Ding, Y.: ¬A review of ontologies with the Semantic Web in view (2001) 0.02
    0.021537323 = product of:
      0.10768661 = sum of:
        0.10768661 = weight(_text_:web in 4152) [ClassicSimilarity], result of:
          0.10768661 = score(doc=4152,freq=4.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.71389294 = fieldWeight in 4152, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=4152)
      0.2 = coord(1/5)
    
    Theme
    Semantic Web
  5. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.02
    0.016154353 = product of:
      0.08077176 = sum of:
        0.08077176 = sum of:
          0.043197546 = weight(_text_:research in 1521) [ClassicSimilarity], result of:
            0.043197546 = score(doc=1521,freq=6.0), product of:
              0.13186905 = queryWeight, product of:
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.046221454 = queryNorm
              0.3275791 = fieldWeight in 1521, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.046875 = fieldNorm(doc=1521)
          0.037574213 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
            0.037574213 = score(doc=1521,freq=2.0), product of:
              0.16185966 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046221454 = queryNorm
              0.23214069 = fieldWeight in 1521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1521)
      0.2 = coord(1/5)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
  6. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.01
    0.011304739 = product of:
      0.056523696 = sum of:
        0.056523696 = weight(_text_:web in 3421) [ClassicSimilarity], result of:
          0.056523696 = score(doc=3421,freq=6.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.37471575 = fieldWeight in 3421, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3421)
      0.2 = coord(1/5)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).
  7. Klein, M.; Ding, Y.; Fensel, D.; Omelayenko, B.: Ontology management : storing, aligning and maintaining ontologies (2004) 0.01
    0.009729571 = product of:
      0.04864785 = sum of:
        0.04864785 = weight(_text_:web in 4402) [ClassicSimilarity], result of:
          0.04864785 = score(doc=4402,freq=10.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.32250395 = fieldWeight in 4402, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4402)
      0.2 = coord(1/5)
    
    Abstract
    Ontologies need to be stored, sometimes aligned and their evolution needs to be managed. All these tasks together are called ontology management. Alignment is a central task in ontology re-use. Re-use of existing ontologies often requires considerable effort: the ontologies either need to be integrated, which means that they are merged into one new ontology, or the ontologies can be kept separate. In both cases, the ontologies have to be aligned, which means that they have to be brought into mutual agreement. The problems that underlie the difficulties in integrating and aligning are the mismatches that may exist between separate ontologies. Ontologies can differ at the language level, which can mean that they are represented in a different syntax, or that the expressiveness of the ontology language is dissimilar. Ontologies also can have mismatches at the model level, for example, in the paradigm, or modelling style. Ontology alignment is very relevant in a Semantic Web context. The Semantic Web will provide us with a lot of freely accessible domain specific ontologies. To form a real web of semantics - which will allow computers to combine and infer implicit knowledge - those separate ontologies should be aligned and linked.
    Support for evolving ontologies is required in almost all situations where ontologies are used in real-world applications. In those cases, ontologies are often developed by several persons and will continue to evolve over time, because of changes in the real world, adaptations to different tasks, or alignments to other ontologies. To prevent that such changes will invalidate existing usage, a change management methodology is needed. This involves advanced versioning methods for the development and the maintenance of ontologies, but also configuration management, that takes care of the identification, relations and interpretation of ontology versions. All these aspects come together in integrated ontology library systems. When the number of different ontologies is increasing, the task of storing, maintaining and re-organizing them to secure the successful re-use of ontologies is challenging. Ontology library systems can help in the grouping and reorganizing ontologies for further re-use, integration, maintenance, mapping and versioning. Basically, a library system offers various functions for managing, adapting and standardizing groups of ontologies. Such integrated systems are a requirement for the Semantic Web to grow further and scale up. In this chapter, we describe a number of results with respect to the above mentioned areas. We start with a description of the alignment task and show a meta-ontology that is developed to specify the mappings. Then, we discuss the problems that are caused by evolving ontologies and describe two important elements of a change management methodology. Finally, in Section 4.4 we survey existing library systems and formulate a wish-list of features of an ontology library system.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
  8. Hu, B.; Dong, X.; Zhang, C.; Bowman, T.D.; Ding, Y.; Milojevic, S.; Ni, C.; Yan, E.; Larivière, V.: ¬A lead-lag analysis of the topic evolution patterns for preprints and publications (2015) 0.01
    0.006526794 = product of:
      0.032633968 = sum of:
        0.032633968 = weight(_text_:web in 2337) [ClassicSimilarity], result of:
          0.032633968 = score(doc=2337,freq=2.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.21634221 = fieldWeight in 2337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2337)
      0.2 = coord(1/5)
    
    Abstract
    This study applied LDA (latent Dirichlet allocation) and regression analysis to conduct a lead-lag analysis to identify different topic evolution patterns between preprints and papers from arXiv and the Web of Science (WoS) in astrophysics over the last 20 years (1992-2011). Fifty topics in arXiv and WoS were generated using an LDA algorithm and then regression models were used to explain 4 types of topic growth patterns. Based on the slopes of the fitted equation curves, the paper redefines the topic trends and popularity. Results show that arXiv and WoS share similar topics in a given domain, but differ in evolution trends. Topics in WoS lose their popularity much earlier and their durations of popularity are shorter than those in arXiv. This work demonstrates that open access preprints have stronger growth tendency as compared to traditional printed publications.
  9. Ding, Y.; Foo, S.: Ontology research and development : part 1 - a review of ontology generation (2002) 0.01
    0.0058193593 = product of:
      0.029096797 = sum of:
        0.029096797 = product of:
          0.058193594 = sum of:
            0.058193594 = weight(_text_:research in 3808) [ClassicSimilarity], result of:
              0.058193594 = score(doc=3808,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.44129837 = fieldWeight in 3808, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3808)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
  10. Ding, Y.; Chowdhury, G.C.; Foo, S.: Bibliometric cartography of information retrieval research by using co-word analysis (2001) 0.00
    0.0049880226 = product of:
      0.024940113 = sum of:
        0.024940113 = product of:
          0.049880225 = sum of:
            0.049880225 = weight(_text_:research in 6487) [ClassicSimilarity], result of:
              0.049880225 = score(doc=6487,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.37825575 = fieldWeight in 6487, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6487)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
  11. Ding, Y.; Foo, S.: Ontology research and development : part 2 - a review of ontology mapping and evolving (2002) 0.00
    0.0049880226 = product of:
      0.024940113 = sum of:
        0.024940113 = product of:
          0.049880225 = sum of:
            0.049880225 = weight(_text_:research in 3835) [ClassicSimilarity], result of:
              0.049880225 = score(doc=3835,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.37825575 = fieldWeight in 3835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3835)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
  12. Zhai, Y; Ding, Y.; Wang, F.: Measuring the diffusion of an innovation : a citation analysis (2018) 0.00
    0.004319755 = product of:
      0.021598773 = sum of:
        0.021598773 = product of:
          0.043197546 = sum of:
            0.043197546 = weight(_text_:research in 4116) [ClassicSimilarity], result of:
              0.043197546 = score(doc=4116,freq=6.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.3275791 = fieldWeight in 4116, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4116)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Innovations transform our research traditions and become the driving force to advance individual, group, and social creativity. Meanwhile, interdisciplinary research is increasingly being promoted as a route to advance the complex challenges we face as a society. In this paper, we use Latent Dirichlet Allocation (LDA) citation as a proxy context for the diffusion of an innovation. With an analysis of topic evolution, we divide the diffusion process into five stages: testing and evaluation, implementation, improvement, extending, and fading. Through a correlation analysis of topic and subject, we show the application of LDA in different subjects. We also reveal the cross-boundary diffusion between different subjects based on the analysis of the interdisciplinary studies. The results show that as LDA is transferred into different areas, the adoption of each subject is relatively adjacent to those with similar research interests. Our findings further support researchers' understanding of the impact formation of innovation.
  13. Ding, Y.: Visualization of intellectual structure in information retrieval : author cocitation analysis (1998) 0.00
    0.0041149086 = product of:
      0.020574544 = sum of:
        0.020574544 = product of:
          0.041149087 = sum of:
            0.041149087 = weight(_text_:research in 2792) [ClassicSimilarity], result of:
              0.041149087 = score(doc=2792,freq=4.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.31204507 = fieldWeight in 2792, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2792)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Reports results of a cocitation analysis study from the international retrieval research field from 1987 to 1997. Data was taken from Social SciSearch, via Dialog, and the top 40 authors were submitted to author cocitation analysis to yield the intellectual structure of information retrieval. The resulting multidimensional scaling map revealed: identifiable author groups for information retrieval; location of these groups with respect to each other; extend of centrality and peripherality of authors within groups, proximities of authors within groups and across group boundaries; and the meaning of the axes of the map. Factor analysis was used to reveal the extent of the authors' research areas and statistical routines included: ALSCAL; clustering analysis and factor analysis
  14. Bu, Y.; Ding, Y.; Xu, J.; Liang, X.; Gao, G.; Zhao, Y.: Understanding success through the diversity of collaborators and the milestone of career (2018) 0.00
    0.0035997957 = product of:
      0.017998978 = sum of:
        0.017998978 = product of:
          0.035997957 = sum of:
            0.035997957 = weight(_text_:research in 4012) [ClassicSimilarity], result of:
              0.035997957 = score(doc=4012,freq=6.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2729826 = fieldWeight in 4012, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4012)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Scientific collaboration is vital to many fields, and it is common to see scholars seek out experienced researchers or experts in a domain with whom they can share knowledge, experience, and resources. To explore the diversity of research collaborations, this article performs a temporal analysis on the scientific careers of researchers in the field of computer science. Specifically, we analyze collaborators using 2 indicators: the research topic diversity, measured by the Author-Conference-Topic model and cosine, and the impact diversity, measured by the normalized standard deviation of h-indices. We find that the collaborators of high-impact researchers tend to study diverse research topics and have diverse h-indices. Moreover, by setting PhD graduation as an important milestone in researchers' careers, we examine several indicators related to scientific collaboration and their effects on a career. The results show that collaborating with authoritative authors plays an important role prior to a researcher's PhD graduation, but working with non-authoritative authors carries more weight after PhD graduation.
  15. Xu, H.; Bu, Y.; Liu, M.; Zhang, C.; Sun, M.; Zhang, Y.; Meyer, E.; Salas, E.; Ding, Y.: Team power dynamics and team impact : new perspectives on scientific collaboration using career age as a proxy for team power (2022) 0.00
    0.0035997957 = product of:
      0.017998978 = sum of:
        0.017998978 = product of:
          0.035997957 = sum of:
            0.035997957 = weight(_text_:research in 663) [ClassicSimilarity], result of:
              0.035997957 = score(doc=663,freq=6.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2729826 = fieldWeight in 663, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=663)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all coauthors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of coauthors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.
  16. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.00
    0.0035270646 = product of:
      0.017635323 = sum of:
        0.017635323 = product of:
          0.035270646 = sum of:
            0.035270646 = weight(_text_:research in 1202) [ClassicSimilarity], result of:
              0.035270646 = score(doc=1202,freq=4.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2674672 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
  17. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.00
    0.0033253485 = product of:
      0.016626742 = sum of:
        0.016626742 = product of:
          0.033253483 = sum of:
            0.033253483 = weight(_text_:research in 2704) [ClassicSimilarity], result of:
              0.033253483 = score(doc=2704,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2521705 = fieldWeight in 2704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2704)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International Society for Scientometrics and Informetrics (ISSI) conferences. Findings show that this weighted PageRank algorithm provides reliable results in measuring author impact.
  18. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.00
    0.0024940113 = product of:
      0.012470056 = sum of:
        0.012470056 = product of:
          0.024940113 = sum of:
            0.024940113 = weight(_text_:research in 274) [ClassicSimilarity], result of:
              0.024940113 = score(doc=274,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.18912788 = fieldWeight in 274, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=274)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This study explores the similarity among six types of scholarly networks aggregated at the institution level, including bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks. Cosine distance is chosen to measure the similarities among the six networks. The authors found that topical networks and coauthorship networks have the lowest similarity; cocitation networks and citation networks have high similarity; bibliographic coupling networks and cocitation networks have high similarity; and coword networks and topical networks have high similarity. In addition, through multidimensional scaling, two dimensions can be identified among the six networks: Dimension 1 can be interpreted as citation-based versus noncitation-based, and Dimension 2 can be interpreted as social versus cognitive. The authors recommend the use of hybrid or heterogeneous networks to study research interaction and scholarly communications.
  19. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.00
    0.0024940113 = product of:
      0.012470056 = sum of:
        0.012470056 = product of:
          0.024940113 = sum of:
            0.024940113 = weight(_text_:research in 975) [ClassicSimilarity], result of:
              0.024940113 = score(doc=975,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.18912788 = fieldWeight in 975, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=975)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
  20. Zhang, C.; Bu, Y.; Ding, Y.; Xu, J.: Understanding scientific collaboration : homophily, transitivity, and preferential attachment (2018) 0.00
    0.0024940113 = product of:
      0.012470056 = sum of:
        0.012470056 = product of:
          0.024940113 = sum of:
            0.024940113 = weight(_text_:research in 4011) [ClassicSimilarity], result of:
              0.024940113 = score(doc=4011,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.18912788 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Scientific collaboration is essential in solving problems and breeding innovation. Coauthor network analysis has been utilized to study scholars' collaborations for a long time, but these studies have not simultaneously taken different collaboration features into consideration. In this paper, we present a systematic approach to analyze the differences in possibilities that two authors will cooperate as seen from the effects of homophily, transitivity, and preferential attachment. Exponential random graph models (ERGMs) are applied in this research. We find that different types of publications one author has written play diverse roles in his/her collaborations. An author's tendency to form new collaborations with her/his coauthors' collaborators is strong, where the more coauthors one author had before, the more new collaborators he/she will attract. We demonstrate that considering the authors' attributes and homophily effects as well as the transitivity and preferential attachment effects of the coauthorship network in which they are embedded helps us gain a comprehensive understanding of scientific collaboration.