Search (140 results, page 1 of 7)

  • × theme_ss:"Citation indexing"
  1. He, Y.; Hui, S.C.: PubSearch : a Web citation-based retrieval system (2001) 0.10
    0.10205457 = product of:
      0.17009094 = sum of:
        0.060152818 = weight(_text_:wide in 4806) [ClassicSimilarity], result of:
          0.060152818 = score(doc=4806,freq=2.0), product of:
            0.20479609 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046221454 = queryNorm
            0.29372054 = fieldWeight in 4806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4806)
        0.09230281 = weight(_text_:web in 4806) [ClassicSimilarity], result of:
          0.09230281 = score(doc=4806,freq=16.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.6119082 = fieldWeight in 4806, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4806)
        0.017635323 = product of:
          0.035270646 = sum of:
            0.035270646 = weight(_text_:research in 4806) [ClassicSimilarity], result of:
              0.035270646 = score(doc=4806,freq=4.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2674672 = fieldWeight in 4806, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4806)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Many scientific publications are now available on the World Wide Web for researchers to share research findings. However, they tend to be poorly organised, making the search of relevant publications difficult and time-consuming. Most existing search engines are ineffective in searching these publications, as they do not index Web publications that normally appear in PDF (portable document format) or PostScript formats. Proposes a Web citation-based retrieval system, known as PubSearch, for the retrieval of Web publications. PubSearch indexes Web publications based on citation indices and stores them into a Web Citation Database. The Web Citation Database is then mined to support publication retrieval. Apart from supporting the traditional cited reference search, PubSearch also provides document clustering search and author clustering search. Document clustering groups related publications into clusters, while author clustering categorizes authors into different research areas based on author co-citation analysis.
  2. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.04
    0.044284817 = product of:
      0.110712044 = sum of:
        0.032633968 = weight(_text_:web in 2763) [ClassicSimilarity], result of:
          0.032633968 = score(doc=2763,freq=2.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.21634221 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2763)
        0.078078076 = sum of:
          0.024940113 = weight(_text_:research in 2763) [ClassicSimilarity], result of:
            0.024940113 = score(doc=2763,freq=2.0), product of:
              0.13186905 = queryWeight, product of:
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.046221454 = queryNorm
              0.18912788 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
          0.053137966 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.053137966 = score(doc=2763,freq=4.0), product of:
              0.16185966 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046221454 = queryNorm
              0.32829654 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
      0.4 = coord(2/5)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
  3. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.04
    0.043377835 = product of:
      0.10844459 = sum of:
        0.098052874 = weight(_text_:web in 5176) [ClassicSimilarity], result of:
          0.098052874 = score(doc=5176,freq=26.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.65002745 = fieldWeight in 5176, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5176)
        0.010391714 = product of:
          0.020783428 = sum of:
            0.020783428 = weight(_text_:research in 5176) [ClassicSimilarity], result of:
              0.020783428 = score(doc=5176,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.15760657 = fieldWeight in 5176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5176)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
  4. Smith, A.G.: Web links as analogues of citations (2004) 0.04
    0.04209709 = product of:
      0.10524273 = sum of:
        0.07614593 = weight(_text_:web in 4205) [ClassicSimilarity], result of:
          0.07614593 = score(doc=4205,freq=2.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.50479853 = fieldWeight in 4205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.109375 = fieldNorm(doc=4205)
        0.029096797 = product of:
          0.058193594 = sum of:
            0.058193594 = weight(_text_:research in 4205) [ClassicSimilarity], result of:
              0.058193594 = score(doc=4205,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.44129837 = fieldWeight in 4205, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4205)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Information Research. 9(2004), no.4
  5. New Web Citation Index (2004) 0.04
    0.041909147 = product of:
      0.104772866 = sum of:
        0.09230281 = weight(_text_:web in 2270) [ClassicSimilarity], result of:
          0.09230281 = score(doc=2270,freq=16.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.6119082 = fieldWeight in 2270, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2270)
        0.012470056 = product of:
          0.024940113 = sum of:
            0.024940113 = weight(_text_:research in 2270) [ClassicSimilarity], result of:
              0.024940113 = score(doc=2270,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.18912788 = fieldWeight in 2270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2270)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Philadelphia, PA USA-London UK-Princeton, NJ February, 25, 2004 - Today, Thomson ISI and NEC Laboratories America (NEC) announced their collaboration to create a comprehensive, multidisciplinary citation index for Web-based scholarly resources. The new Web Citation Index(tm) will combine a suite of technologies developed by NEC, including "autonomous citation indexing" tools from NEC's CiteSeer environment, with the capabilities underlying ISI Web of KnowledgeSM. Thomson ISI editors will carefully monitor the quality of this new resource to ensure all indexed material meets the Thomson ISI high-quality standards. During 2004, Thomson ISI and NEC will operate a pilot of the new resource to receive feedback from the scientific and scholarly community. Full access to the index is projected for early 2005. When fully operational, the new resource will be a unique content collection within ISI Web of Knowledge. It will complement the Thomson ISI Web of Science(r), and provide researchers with a new gateway to discovery 4/3 using citation relationships among Web-based documents, such as pre-prints, proceedings, and "open access" research publications.
    Object
    Web of Science
  6. ISI offers intranet access to its citation index databases (1997) 0.04
    0.039080974 = product of:
      0.09770243 = sum of:
        0.076919004 = weight(_text_:web in 554) [ClassicSimilarity], result of:
          0.076919004 = score(doc=554,freq=4.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.5099235 = fieldWeight in 554, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=554)
        0.020783428 = product of:
          0.041566856 = sum of:
            0.041566856 = weight(_text_:research in 554) [ClassicSimilarity], result of:
              0.041566856 = score(doc=554,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.31521314 = fieldWeight in 554, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.078125 = fieldNorm(doc=554)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Announces the availability of the Web of Science, a proprietary Web browser providing intranet access to the Citation Index databases from ISI. The new browser interface will allow researcher to browse indexed information and perform further research. Describes search options
  7. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.04
    0.03855591 = product of:
      0.09638977 = sum of:
        0.08599806 = weight(_text_:web in 337) [ClassicSimilarity], result of:
          0.08599806 = score(doc=337,freq=20.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.5701118 = fieldWeight in 337, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=337)
        0.010391714 = product of:
          0.020783428 = sum of:
            0.020783428 = weight(_text_:research in 337) [ClassicSimilarity], result of:
              0.020783428 = score(doc=337,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.15760657 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
  8. Thelwall, M.: Extracting macroscopic information from Web links (2001) 0.04
    0.03682728 = product of:
      0.0920682 = sum of:
        0.06661381 = weight(_text_:web in 6851) [ClassicSimilarity], result of:
          0.06661381 = score(doc=6851,freq=12.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.4416067 = fieldWeight in 6851, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6851)
        0.025454395 = product of:
          0.05090879 = sum of:
            0.05090879 = weight(_text_:research in 6851) [ClassicSimilarity], result of:
              0.05090879 = score(doc=6851,freq=12.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.38605565 = fieldWeight in 6851, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6851)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Much has been written about the potential and pitfalls of macroscopic Web-based link analysis, yet there have been no studies that have provided clear statistical evidence that any of the proposed calculations can produce results over large areas of the Web that correlate with phenomena external to the Internet. This article attempts to provide such evidence through an evaluation of Ingwersen's (1998) proposed external Web Impact Factor (WIF) for the original use of the Web: the interlinking of academic research. In particular, it studies the case of the relationship between academic hyperlinks and research activity for universities in Britain, a country chosen for its variety of institutions and the existence of an official government rating exercise for research. After reviewing the numerous reasons why link counts may be unreliable, it demonstrates that four different WIFs do, in fact, correlate with the conventional academic research measures. The WIF delivering the greatest correlation with research rankings was the ratio of Web pages with links pointing at research-based pages to faculty numbers. The scarcity of links to electronic academic papers in the data set suggests that, in contrast to citation analysis, this WIF is measuring the reputations of universities and their scholars, rather than the quality of their publications
  9. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.04
    0.036790654 = product of:
      0.091976635 = sum of:
        0.08158492 = weight(_text_:web in 4279) [ClassicSimilarity], result of:
          0.08158492 = score(doc=4279,freq=18.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.5408555 = fieldWeight in 4279, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
        0.010391714 = product of:
          0.020783428 = sum of:
            0.020783428 = weight(_text_:research in 4279) [ClassicSimilarity], result of:
              0.020783428 = score(doc=4279,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.15760657 = fieldWeight in 4279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  10. Brody, T.; Harnad, S.; Carr, L.: Earlier Web usage statistics as predictors of later citation impact (2006) 0.03
    0.03460754 = product of:
      0.086518854 = sum of:
        0.065944314 = weight(_text_:web in 165) [ClassicSimilarity], result of:
          0.065944314 = score(doc=165,freq=6.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.43716836 = fieldWeight in 165, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=165)
        0.020574544 = product of:
          0.041149087 = sum of:
            0.041149087 = weight(_text_:research in 165) [ClassicSimilarity], result of:
              0.041149087 = score(doc=165,freq=4.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.31204507 = fieldWeight in 165, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=165)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The use of citation counts to assess the impact of research articles is well established. However, the citation impact of an article can only be measured several years after it has been published. As research articles are increasingly accessed through the Web, the number of times an article is downloaded can be instantly recorded and counted. One would expect the number of times an article is read to be related both to the number of times it is cited and to how old the article is. The authors analyze how short-term Web usage impact predicts medium-term citation impact. The physics e-print archive-arXiv.org-is used to test this.
  11. Zhao, D.; Strotmann, A.: Can citation analysis of Web publications better detect research fronts? (2007) 0.03
    0.034505684 = product of:
      0.08626421 = sum of:
        0.060809813 = weight(_text_:web in 471) [ClassicSimilarity], result of:
          0.060809813 = score(doc=471,freq=10.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.40312994 = fieldWeight in 471, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=471)
        0.025454395 = product of:
          0.05090879 = sum of:
            0.05090879 = weight(_text_:research in 471) [ClassicSimilarity], result of:
              0.05090879 = score(doc=471,freq=12.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.38605565 = fieldWeight in 471, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=471)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    We present evidence that in some research fields, research published in journals and reported on the Web may collectively represent different evolutionary stages of the field, with journals lagging a few years behind the Web on average, and that a "two-tier" scholarly communication system may therefore be evolving. We conclude that in such fields, (a) for detecting current research fronts, author co-citation analyses (ACA) using articles published on the Web as a data source can outperform traditional ACAs using articles published in journals as data, and that (b) as a result, it is important to use multiple data sources in citation analysis studies of scholarly communication for a complete picture of communication patterns. Our evidence stems from comparing the respective intellectual structures of the XML research field, a subfield of computer science, as revealed from three sets of ACA covering two time periods: (a) from the field's beginnings in 1996 to 2001, and (b) from 2001 to 2006. For the first time period, we analyze research articles both from journals as indexed by the Science Citation Index (SCI) and from the Web as indexed by CiteSeer. We follow up by an ACA of SCI data for the second time period. We find that most trends in the evolution of this field from the first to the second time period that we find when comparing ACA results from the SCI between the two time periods already were apparent in the ACA results from CiteSeer during the first time period.
  12. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.03
    0.034176733 = product of:
      0.085441835 = sum of:
        0.072971776 = weight(_text_:web in 943) [ClassicSimilarity], result of:
          0.072971776 = score(doc=943,freq=10.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.48375595 = fieldWeight in 943, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
        0.012470056 = product of:
          0.024940113 = sum of:
            0.024940113 = weight(_text_:research in 943) [ClassicSimilarity], result of:
              0.024940113 = score(doc=943,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.18912788 = fieldWeight in 943, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=943)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
    Object
    Web of Knowledge
  13. Nederhof, A.J.; Visser, M.S.: Quantitative deconstruction of citation impact indicators : waxing field impact but waning journal impact (2004) 0.03
    0.034037173 = product of:
      0.08509293 = sum of:
        0.060152818 = weight(_text_:wide in 4419) [ClassicSimilarity], result of:
          0.060152818 = score(doc=4419,freq=2.0), product of:
            0.20479609 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046221454 = queryNorm
            0.29372054 = fieldWeight in 4419, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4419)
        0.024940113 = product of:
          0.049880225 = sum of:
            0.049880225 = weight(_text_:research in 4419) [ClassicSimilarity], result of:
              0.049880225 = score(doc=4419,freq=8.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.37825575 = fieldWeight in 4419, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4419)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In two case studies of research units, reference values used to benchmark research performance appeared to show contradictory results: the average citation level in the subfields (FCSm) increased world-wide, while the citation level of the journals (JCSm) decreased, where concomitant changes were expected. Explanations were sought in: a shift in preference of document types; a change in publication preference for subfields; and changes in journal coverage. Publishing in newly covered journals with a low impact had a negative effect on impact ratios. However, the main factor behind the increase in FCSm was the distribution of articles across the five-year block periods that were studied. Publication in lower impact journals produced a lagging JCSm. Actual values of JCSm, FCSm, and citations per publication (CPP) values are not very informative either about research performance, or about the development of impact over time in a certain subfield with block indicators. Normalized citation impact indicators are free from such effects and should be consulted primarily in research performance assessments.
  14. Cawkell, T.: Checking research progress on 'image retrieval by shape matching' using the Web of Science (1998) 0.03
    0.032197084 = product of:
      0.08049271 = sum of:
        0.065944314 = weight(_text_:web in 3571) [ClassicSimilarity], result of:
          0.065944314 = score(doc=3571,freq=6.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.43716836 = fieldWeight in 3571, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3571)
        0.014548399 = product of:
          0.029096797 = sum of:
            0.029096797 = weight(_text_:research in 3571) [ClassicSimilarity], result of:
              0.029096797 = score(doc=3571,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.22064918 = fieldWeight in 3571, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3571)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Discusses the Web of Science database recently introduced by ISI, and which is compiled from 8.000 journals covered in the SCI, SSCI and AHCI. Briefly compares the database with the Citation Indexes as provided by the BIDS service at the University of Bath. Explores the characteristics and usefulness of the WoS through a search of it for articles on the topic of image retrieval by shape matching. Suggests that the selection of articles of interest is much easier and far quicker using the WoS than other methods of conducting a search using ISI's data
    Object
    Web of Science
  15. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.03
    0.032197084 = product of:
      0.08049271 = sum of:
        0.065944314 = weight(_text_:web in 1065) [ClassicSimilarity], result of:
          0.065944314 = score(doc=1065,freq=6.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.43716836 = fieldWeight in 1065, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1065)
        0.014548399 = product of:
          0.029096797 = sum of:
            0.029096797 = weight(_text_:research in 1065) [ClassicSimilarity], result of:
              0.029096797 = score(doc=1065,freq=2.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.22064918 = fieldWeight in 1065, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1065)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
  16. Tay, A.: ¬The next generation discovery citation indexes : a review of the landscape in 2020 (2020) 0.03
    0.030304639 = product of:
      0.075761594 = sum of:
        0.053843305 = weight(_text_:web in 40) [ClassicSimilarity], result of:
          0.053843305 = score(doc=40,freq=4.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.35694647 = fieldWeight in 40, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=40)
        0.021918291 = product of:
          0.043836582 = sum of:
            0.043836582 = weight(_text_:22 in 40) [ClassicSimilarity], result of:
              0.043836582 = score(doc=40,freq=2.0), product of:
                0.16185966 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046221454 = queryNorm
                0.2708308 = fieldWeight in 40, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=40)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Conclusion There is a reason why Google Scholar and Web of Science/Scopus are kings of the hills in their various arenas. They have strong brand recogniton, a head start in development and a mass of eyeballs and users that leads to an almost virtious cycle of improvement. Competing against such well established competitors is not easy even when one has deep pockets (Microsoft) or a killer idea (scite). It will be interesting to see how the landscape will look like in 2030. Stay tuned for part II where I review each particular index.
    Date
    17.11.2020 12:22:59
    Object
    Web of Science
  17. H-Index auch im Web of Science (2008) 0.03
    0.030124322 = product of:
      0.075310804 = sum of:
        0.056523696 = weight(_text_:web in 590) [ClassicSimilarity], result of:
          0.056523696 = score(doc=590,freq=6.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.37471575 = fieldWeight in 590, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=590)
        0.018787106 = product of:
          0.037574213 = sum of:
            0.037574213 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
              0.037574213 = score(doc=590,freq=2.0), product of:
                0.16185966 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046221454 = queryNorm
                0.23214069 = fieldWeight in 590, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Content
    "Zur Kurzmitteilung "Latest enhancements in Scopus: ... h-Index incorporated in Scopus" in den letzten Online-Mitteilungen (Online-Mitteilungen 92, S.31) ist zu korrigieren, dass der h-Index sehr wohl bereits im Web of Science enthalten ist. Allerdings findet man/frau diese Information nicht in der "cited ref search", sondern neben der Trefferliste einer Quick Search, General Search oder einer Suche über den Author Finder in der rechten Navigationsleiste unter dem Titel "Citation Report". Der "Citation Report" bietet für die in der jeweiligen Trefferliste angezeigten Arbeiten: - Die Gesamtzahl der Zitierungen aller Arbeiten in der Trefferliste - Die mittlere Zitationshäufigkeit dieser Arbeiten - Die Anzahl der Zitierungen der einzelnen Arbeiten, aufgeschlüsselt nach Publikationsjahr der zitierenden Arbeiten - Die mittlere Zitationshäufigkeit dieser Arbeiten pro Jahr - Den h-Index (ein h-Index von x sagt aus, dass x Arbeiten der Trefferliste mehr als x-mal zitiert wurden; er ist gegenüber sehr hohen Zitierungen einzelner Arbeiten unempfindlicher als die mittlere Zitationshäufigkeit)."
    Date
    6. 4.2008 19:04:22
    Object
    Web of Science
  18. Thelwall, M.; Kousha, K.; Stuart, E.; Makita, M.; Abdoli, M.; Wilson, P.; Levitt, J.: In which fields are citations indicators of research quality? (2023) 0.03
    0.029345572 = product of:
      0.07336393 = sum of:
        0.05012735 = weight(_text_:wide in 1033) [ClassicSimilarity], result of:
          0.05012735 = score(doc=1033,freq=2.0), product of:
            0.20479609 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046221454 = queryNorm
            0.24476713 = fieldWeight in 1033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1033)
        0.023236578 = product of:
          0.046473157 = sum of:
            0.046473157 = weight(_text_:research in 1033) [ClassicSimilarity], result of:
              0.046473157 = score(doc=1033,freq=10.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.352419 = fieldWeight in 1033, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Citation counts are widely used as indicators of research quality to support or replace human peer review and for lists of top cited papers, researchers, and institutions. Nevertheless, the relationship between citations and research quality is poorly evidenced. We report the first large-scale science-wide academic evaluation of the relationship between research quality and citations (field normalized citation counts), correlating them for 87,739 journal articles in 34 field-based UK Units of Assessment (UoA). The two correlate positively in all academic fields, from very weak (0.1) to strong (0.5), reflecting broadly linear relationships in all fields. We give the first evidence that the correlations are positive even across the arts and humanities. The patterns are similar for the field classification schemes of Scopus and Dimensions.ai, although varying for some individual subjects and therefore more uncertain for these. We also show for the first time that no field has a citation threshold beyond which all articles are excellent quality, so lists of top cited articles are not pure collections of excellence, and neither is any top citation percentile indicator. Thus, while appropriately field normalized citations associate positively with research quality in all fields, they never perfectly reflect it, even at high values.
  19. Heneberg, P.: Lifting the fog of scientometric research artifacts : on the scientometric analysis of environmental tobacco smoke research (2013) 0.03
    0.027853856 = product of:
      0.06963464 = sum of:
        0.038459502 = weight(_text_:web in 613) [ClassicSimilarity], result of:
          0.038459502 = score(doc=613,freq=4.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.25496176 = fieldWeight in 613, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=613)
        0.031175138 = product of:
          0.062350277 = sum of:
            0.062350277 = weight(_text_:research in 613) [ClassicSimilarity], result of:
              0.062350277 = score(doc=613,freq=18.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.47281966 = fieldWeight in 613, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Previous analyses identified research on environmental tobacco smoke to be subject to strong fluctuations as measured by both quantitative and qualitative indicators. The evolution of search algorithms (based on the Web of Science and Web of Knowledge database platforms) was used to show the impact of errors of omission and commission in the outcomes of scientometric research. Optimization of the search algorithm led to the complete reassessment of previously published findings on the performance of environmental tobacco smoke research. Instead of strong continuous growth, the field of environmental tobacco smoke research was shown to experience stagnation or slow growth since mid-1990s when evaluated quantitatively. Qualitative analysis revealed steady but slow increase in the citation rate and decrease in uncitedness. Country analysis revealed the North-European countries as leaders in environmental tobacco smoke research (when the normalized results were evaluated both quantitatively and qualitatively), whereas the United States ranked first only when assessing the total number of papers produced. Scientometric research artifacts, including both errors of omission and commission, were shown to be capable of completely obscuring the real output of the chosen research field.
  20. Thelwall, M.; Harries, G.: ¬The connection between the research of a university and counts of links to its Web pages : an investigation based upon a classification of the relationships of pages to the research of the host university (2003) 0.03
    0.026867906 = product of:
      0.06716976 = sum of:
        0.038072966 = weight(_text_:web in 1676) [ClassicSimilarity], result of:
          0.038072966 = score(doc=1676,freq=2.0), product of:
            0.1508442 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046221454 = queryNorm
            0.25239927 = fieldWeight in 1676, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1676)
        0.029096797 = product of:
          0.058193594 = sum of:
            0.058193594 = weight(_text_:research in 1676) [ClassicSimilarity], result of:
              0.058193594 = score(doc=1676,freq=8.0), product of:
                0.13186905 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046221454 = queryNorm
                0.44129837 = fieldWeight in 1676, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1676)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Results from recent advances in link metrics have demonstrated that the hyperlink structure of national university systems can be strongly related to the research productivity of the individual institutions. This paper uses a page categorization to show that restricting the metrics to subsets more closely related to the research of the host university can produce even stronger associations. A partial overlap was also found between the effects of applying advanced document models and separating page types, but the best results were achieved through a combination of the two.

Years

Languages

  • e 128
  • d 12

Types

  • a 137
  • el 7
  • m 2
  • s 1
  • More… Less…