Search (25 results, page 1 of 2)

  • × author_ss:"Egghe, L."
  1. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.03
    0.033387464 = product of:
      0.08346866 = sum of:
        0.04098487 = weight(_text_:it in 7659) [ClassicSimilarity], result of:
          0.04098487 = score(doc=7659,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27114958 = fieldWeight in 7659, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.042483795 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
          0.042483795 = score(doc=7659,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 7659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
      0.4 = coord(2/5)
    
    Abstract
    It is possible, using ISI's Journal Citation Report (JCR), to calculate average impact factors (AIF) for LCR's subject categories but it can be more useful to know the global Impact Factor (GIF) of a subject category and compare the 2 values. Reports results of a study to compare the relationships between AIFs and GIFs of subjects, based on the particular case of the average impact factor of a subfield versus the impact factor of this subfield as a whole, the difference being studied between an average of quotients, denoted as AQ, and a global average, obtained as a quotient of averages, and denoted as GQ. In the case of impact factors, AQ becomes the average impact factor of a field, and GQ becomes its global impact factor. Discusses a number of applications of this technique in the context of informetrics and scientometrics
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  2. Egghe, L.: ¬A universal method of information retrieval evaluation : the "missing" link M and the universal IR surface (2004) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 2558) [ClassicSimilarity], result of:
          0.028980678 = score(doc=2558,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 2558, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=2558)
        0.042483795 = weight(_text_:22 in 2558) [ClassicSimilarity], result of:
          0.042483795 = score(doc=2558,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 2558, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=2558)
      0.4 = coord(2/5)
    
    Abstract
    The paper shows that the present evaluation methods in information retrieval (basically recall R and precision P and in some cases fallout F ) lack universal comparability in the sense that their values depend on the generality of the IR problem. A solution is given by using all "parts" of the database, including the non-relevant documents and also the not-retrieved documents. It turns out that the solution is given by introducing the measure M being the fraction of the not-retrieved documents that are relevant (hence the "miss" measure). We prove that - independent of the IR problem or of the IR action - the quadruple (P,R,F,M) belongs to a universal IR surface, being the same for all IR-activities. This universality is then exploited by defining a new measure for evaluation in IR allowing for unbiased comparisons of all IR results. We also show that only using one, two or even three measures from the set {P,R,F,M} necessary leads to evaluation measures that are non-universal and hence not capable of comparing different IR situations.
    Date
    14. 8.2004 19:17:22
  3. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.01
    0.014161265 = product of:
      0.070806324 = sum of:
        0.070806324 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
          0.070806324 = score(doc=4992,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.38690117 = fieldWeight in 4992, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=4992)
      0.2 = coord(1/5)
    
    Date
    14. 2.2012 12:53:22
  4. Egghe, L.: Zipfian and Lotkaian continuous concentration theory (2005) 0.01
    0.010039202 = product of:
      0.050196007 = sum of:
        0.050196007 = weight(_text_:it in 3678) [ClassicSimilarity], result of:
          0.050196007 = score(doc=3678,freq=6.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.33208904 = fieldWeight in 3678, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
      0.2 = coord(1/5)
    
    Abstract
    In this article concentration (i.e., inequality) aspects of the functions of Zipf and of Lotka are studied. Since both functions are power laws (i.e., they are mathematically the same) it suffices to develop one concentration theory for power laws and apply it twice for the different interpretations of the laws of Zipf and Lotka. After a brief repetition of the functional relationships between Zipf's law and Lotka's law, we prove that Price's law of concentration is equivalent with Zipf's law. A major part of this article is devoted to the development of continuous concentration theory, based an Lorenz curves. The Lorenz curve for power functions is calculated and, based an this, some important concentration measures such as the ones of Gini, Theil, and the variation coefficient. Using Lorenz curves, it is shown that the concentration of a power law increases with its exponent and this result is interpreted in terms of the functions of Zipf and Lotka.
  5. Egghe, L.: ¬A good normalized impact and concentration measure (2014) 0.01
    0.009660226 = product of:
      0.04830113 = sum of:
        0.04830113 = weight(_text_:it in 1508) [ClassicSimilarity], result of:
          0.04830113 = score(doc=1508,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.31955284 = fieldWeight in 1508, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.078125 = fieldNorm(doc=1508)
      0.2 = coord(1/5)
    
    Abstract
    It is shown that a normalized version of the g-index is a good normalized impact and concentration measure. A proposal for such a measure by Bartolucci is improved.
  6. Egghe, L.; Rousseau, R.: Aging, obsolescence, impact, growth, and utilization : definitions and relations (2000) 0.01
    0.008196974 = product of:
      0.04098487 = sum of:
        0.04098487 = weight(_text_:it in 5154) [ClassicSimilarity], result of:
          0.04098487 = score(doc=5154,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27114958 = fieldWeight in 5154, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
      0.2 = coord(1/5)
    
    Abstract
    The notions aging, obsolescence, impact, growth, utilization, and their relations are studied. It is shown how to correct an observed citation distribution for growth, once the growth distribution is known. The relation of this correction procedure with the calculation of impact measures is explained. More interestingly, we have shown how the influence of growth on aging can be studied over a complete period as a whole. Here, the difference between the so-called average and global aging distributions is the main factor. Our main result is that growth can influence aging but that it does not cause aging. A short overview of some classical articles on this topic is given. Results of these earlier works are placed in the framework set up in this article
  7. Egghe, L.; Rousseau, R.: Duality in information retrieval and the hypegeometric distribution (1997) 0.01
    0.0077281813 = product of:
      0.038640905 = sum of:
        0.038640905 = weight(_text_:it in 647) [ClassicSimilarity], result of:
          0.038640905 = score(doc=647,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 647, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0625 = fieldNorm(doc=647)
      0.2 = coord(1/5)
    
    Abstract
    Asserts that duality is an important topic in informetrics, especially in connection with the classical informetric laws. Yet this concept is less studied in information retrieval. It deals with the unification or symmetry between queries and documents, search formulation versus indexing, and relevant versus retrieved documents. Elaborates these ideas and highlights the connection with the hypergeometric distribution
  8. Egghe, L.: On the law of Zipf-Mandelbrot for multi-word phrases (1999) 0.01
    0.0077281813 = product of:
      0.038640905 = sum of:
        0.038640905 = weight(_text_:it in 3058) [ClassicSimilarity], result of:
          0.038640905 = score(doc=3058,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 3058, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0625 = fieldNorm(doc=3058)
      0.2 = coord(1/5)
    
    Abstract
    This article studies the probabilities of the occurence of multi-word (m-word) phrases (m=2,3,...) in relation to the probabilities of occurence of the single words. It is well known that, in the latter case, the lae of Zipf is valid (i.e., a power law). We prove that in the case of m-word phrases (m>=2), this is not the case. We present 2 independent proof of this
  9. Egghe, L.: Mathematical theories of citation (1998) 0.01
    0.0077281813 = product of:
      0.038640905 = sum of:
        0.038640905 = weight(_text_:it in 5125) [ClassicSimilarity], result of:
          0.038640905 = score(doc=5125,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 5125, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0625 = fieldNorm(doc=5125)
      0.2 = coord(1/5)
    
    Abstract
    Focuses on possible mathematical theories of citation and on the intrinsic problems related to it. Sheds light on aspects of mathematical complexity as encountered in, for example, fractal theory and Mandelbrot's law. Also discusses dynamical aspects of citation theory as reflected in evolutions of journal rankings, centres of gravity or of the set of source journals. Makes some comments in this connection on growth and obsolescence
  10. Egghe, L.; Rousseau, R.: ¬An h-index weighted by citation impact (2008) 0.01
    0.0077281813 = product of:
      0.038640905 = sum of:
        0.038640905 = weight(_text_:it in 695) [ClassicSimilarity], result of:
          0.038640905 = score(doc=695,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 695, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0625 = fieldNorm(doc=695)
      0.2 = coord(1/5)
    
    Abstract
    An h-type index is proposed which depends on the obtained citations of articles belonging to the h-core. This weighted h-index, denoted as hw, is presented in a continuous setting and in a discrete one. It is shown that in a continuous setting the new index enjoys many good properties. In the discrete setting some small deviations from the ideal may occur.
  11. Egghe, L.; Rousseau, R.: Topological aspects of information retrieval (1998) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 2157) [ClassicSimilarity], result of:
          0.03381079 = score(doc=2157,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 2157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2157)
      0.2 = coord(1/5)
    
    Abstract
    Let (DS, DQ, sim) be a retrieval system consisting of a document space DS, a query space QS, and a function sim, expressing the similarity between a document and a query. Following D.M. Everett and S.C. Cater (1992), we introduce topologies on the document space. These topologies are generated by the similarity function sim and the query space QS. 3 topologies will be studied: the retrieval topology, the similarity topology and the (pseudo-)metric one. It is shown that the retrieval topology is the coarsest of the three, while the (pseudo-)metric is the strongest. These 3 topologies are generally different, reflecting distinct topological aspects of information retrieval. We present necessary and sufficient conditions for these topological aspects to be equal
  12. Egghe, L.: Vector retrieval, fuzzy retrieval and the universal fuzzy IR surface for IR evaluation (2004) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 2531) [ClassicSimilarity], result of:
          0.03381079 = score(doc=2531,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 2531, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2531)
      0.2 = coord(1/5)
    
    Abstract
    It is shown that vector information retrieval (IR) and general fuzzy IR uses two types of fuzzy set operations: the original "Zadeh min-max operations" and the so-called "probabilistic sum and algebraic product operations". The universal IR surface, valid for classical 0-1 IR (i.e. where ordinary sets are used) and used in IR evaluation, is extended to and reproved for vector IR, using the probabilistic sum and algebraic product model. We also show (by counterexample) that, using the "Zadeh min-max" fuzzy model, yields a breakdown of this IR surface.
  13. Egghe, L.; Rousseau, R.; Rousseau, S.: TOP-curves (2007) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 50) [ClassicSimilarity], result of:
          0.03381079 = score(doc=50,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 50, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=50)
      0.2 = coord(1/5)
    
    Abstract
    Several characteristics of classical Lorenz curves make them unsuitable for the study of a group of topperformers. TOP-curves, defined as a kind of mirror image of TIP-curves used in poverty studies, are shown to possess the properties necessary for adequate empirical ranking of various data arrays, based on the properties of the highest performers (i.e., the core). TOP-curves and essential TOP-curves, also introduced in this article, simultaneously represent the incidence, intensity, and inequality among the top. It is shown that TOPdominance partial order, introduced in this article, is stronger than Lorenz dominance order. In this way, this article contributes to the study of cores, a central issue in applied informetrics.
  14. Egghe, L.; Liang, L.; Rousseau, R.: Fundamental properties of rhythm sequences (2008) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 1965) [ClassicSimilarity], result of:
          0.03381079 = score(doc=1965,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 1965, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1965)
      0.2 = coord(1/5)
    
    Abstract
    Fundamental mathematical properties of rhythm sequences are studied. In particular, a set of three axioms for valid rhythm indicators is proposed, and it is shown that the R-indicator satisfies only two out of three but that the R-indicator satisfies all three. This fills a critical, logical gap in the study of these indicator sequences. Matrices leading to a constant R-sequence are called baseline matrices. They are characterized as matrices with constant w-year diachronous impact factors. The relation with classical impact factors is clarified. Using regression analysis matrices with a rhythm sequence that is on average equal to 1 (smaller than 1, larger than 1) are characterized.
  15. Egghe, L.: ¬A rationale for the Hirsch-index rank-order distribution and a comparison with the impact factor rank-order distribution (2009) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 3124) [ClassicSimilarity], result of:
          0.03381079 = score(doc=3124,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 3124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3124)
      0.2 = coord(1/5)
    
    Abstract
    We present a rationale for the Hirsch-index rank-order distribution and prove that it is a power law (hence a straight line in the log-log scale). This is confirmed by experimental data of Pyykkö and by data produced in this article on 206 mathematics journals. This distribution is of a completely different nature than the impact factor (IF) rank-order distribution which (as proved in a previous article) is S-shaped. This is also confirmed by our example. Only in the log-log scale of the h-index distribution do we notice a concave deviation of the straight line for higher ranks. This phenomenon is discussed.
  16. Egghe, L.; Rousseau, R.: ¬The Hirsch index of a shifted Lotka function and its relation with the impact factor (2012) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 243) [ClassicSimilarity], result of:
          0.03381079 = score(doc=243,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 243, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=243)
      0.2 = coord(1/5)
    
    Abstract
    Based on earlier results about the shifted Lotka function, we prove an implicit functional relation between the Hirsch index (h-index) and the total number of sources (T). It is shown that the corresponding function, h(T), is concavely increasing. Next, we construct an implicit relation between the h-index and the impact factor IF (an average number of items per source). The corresponding function h(IF) is increasing and we show that if the parameter C in the numerator of the shifted Lotka function is high, then the relation between the h-index and the impact factor is almost linear.
  17. Egghe, L.: Theory of the topical coverage of multiple databases (2013) 0.01
    0.006762158 = product of:
      0.03381079 = sum of:
        0.03381079 = weight(_text_:it in 526) [ClassicSimilarity], result of:
          0.03381079 = score(doc=526,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22368698 = fieldWeight in 526, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=526)
      0.2 = coord(1/5)
    
    Abstract
    We present a model that describes which fraction of the literature on a certain topic we will find when we use n (n = 1, 2, .) databases. It is a generalization of the theory of discovering usability problems. We prove that, in all practical cases, this fraction is a concave function of n, the number of used databases, thereby explaining some graphs that exist in the literature. We also study limiting features of this fraction for n very high and we characterize the case that we find all literature on a certain topic for n high enough.
  18. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 4384) [ClassicSimilarity], result of:
          0.028980678 = score(doc=4384,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 4384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.2 = coord(1/5)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
  19. Egghe, L.: Relations between the continuous and the discrete Lotka power function (2005) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 3464) [ClassicSimilarity], result of:
          0.028980678 = score(doc=3464,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 3464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
      0.2 = coord(1/5)
    
    Abstract
    The discrete Lotka power function describes the number of sources (e.g., authors) with n = 1, 2, 3, ... items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.
  20. Egghe, L.; Ravichandra Rao, I.K.: Study of different h-indices for groups of authors (2008) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 1878) [ClassicSimilarity], result of:
          0.028980678 = score(doc=1878,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 1878, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=1878)
      0.2 = coord(1/5)
    
    Abstract
    In this article, for any group of authors, we define three different h-indices. First, there is the successive h-index h2 based on the ranked list of authors and their h-indices h1 as defined by Schubert (2007). Next, there is the h-index hP based on the ranked list of authors and their number of publications. Finally, there is the h-index hC based on the ranked list of authors and their number of citations. We present formulae for these three indices in Lotkaian informetrics from which it also follows that h2 < hp < hc. We give a concrete example of a group of 167 authors on the topic optical flow estimation. Besides these three h-indices, we also calculate the two-by-two Spearman rank correlation coefficient and prove that these rankings are significantly related.