Search (8 results, page 1 of 1)

  • × author_ss:"Golub, K."
  1. Golub, K.; Tudhope, D.; Zeng, M.L.; Zumer, M.: Terminology registries for knowledge organization systems : functionality, use, and attributes (2014) 0.01
    0.008496759 = product of:
      0.042483795 = sum of:
        0.042483795 = weight(_text_:22 in 1347) [ClassicSimilarity], result of:
          0.042483795 = score(doc=1347,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 1347, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=1347)
      0.2 = coord(1/5)
    
    Date
    22. 8.2014 17:12:54
  2. Golub, K.; Hamon, T.; Ardö, A.: Automated classification of textual documents based on a controlled vocabulary in engineering (2007) 0.01
    0.008196974 = product of:
      0.04098487 = sum of:
        0.04098487 = weight(_text_:it in 1461) [ClassicSimilarity], result of:
          0.04098487 = score(doc=1461,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27114958 = fieldWeight in 1461, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=1461)
      0.2 = coord(1/5)
    
    Abstract
    Automated subject classification has been a challenging research issue for many years now, receiving particular attention in the past decade due to rapid increase of digital documents. The most frequent approach to automated classification is machine learning. It, however, requires training documents and performs well on new documents only if these are similar enough to the former. We explore a string-matching algorithm based on a controlled vocabulary, which does not require training documents - instead it reuses the intellectual work put into creating the controlled vocabulary. Terms from the Engineering Information thesaurus and classification scheme were matched against title and abstract of engineering papers from the Compendex database. Simple string-matching was enhanced by several methods such as term weighting schemes and cut-offs, exclusion of certain terms, and en- richment of the controlled vocabulary with automatically extracted terms. The best results are 76% recall when the controlled vocabulary is enriched with new terms, and 79% precision when certain terms are excluded. Precision of individual classes is up to 98%. These results are comparable to state-of-the-art machine-learning algorithms.
  3. Golub, K.: Subject access to information : an interdisciplinary approach (2015) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 134) [ClassicSimilarity], result of:
          0.028980678 = score(doc=134,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=134)
      0.2 = coord(1/5)
    
    Abstract
    Drawing on the research of experts from the fields of computing and library science, this ground-breaking work will show you how to combine two very different approaches to classification to create more effective, user-friendly information-retrieval systems. * Provides an interdisciplinary overview of current and potential approaches to organizing information by subject * Covers both pure computer science and pure library science topics in easy-to-understand language accessible to audiences from both disciplines * Reviews technological standards for representation, storage, and retrieval of varied knowledge-organization systems and their constituent elements * Suggests a collaborative approach that will reduce duplicate efforts and make it easier to find solutions to practical problems.
  4. Golub, K.: Automated subject classification of textual documents in the context of Web-based hierarchical browsing (2011) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 4558) [ClassicSimilarity], result of:
          0.028980678 = score(doc=4558,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 4558, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=4558)
      0.2 = coord(1/5)
    
    Abstract
    While automated methods for information organization have been around for several decades now, exponential growth of the World Wide Web has put them into the forefront of research in different communities, within which several approaches can be identified: 1) machine learning (algorithms that allow computers to improve their performance based on learning from pre-existing data); 2) document clustering (algorithms for unsupervised document organization and automated topic extraction); and 3) string matching (algorithms that match given strings within larger text). Here the aim was to automatically organize textual documents into hierarchical structures for subject browsing. The string-matching approach was tested using a controlled vocabulary (containing pre-selected and pre-defined authorized terms, each corresponding to only one concept). The results imply that an appropriate controlled vocabulary, with a sufficient number of entry terms designating classes, could in itself be a solution for automated classification. Then, if the same controlled vocabulary had an appropriat hierarchical structure, it would at the same time provide a good browsing structure for the collection of automatically classified documents.
  5. Golub, K.; Lykke, M.; Tudhope, D.: Enhancing social tagging with automated keywords from the Dewey Decimal Classification (2014) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 2918) [ClassicSimilarity], result of:
          0.024150565 = score(doc=2918,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 2918, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2918)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The purpose of this paper is to explore the potential of applying the Dewey Decimal Classification (DDC) as an established knowledge organization system (KOS) for enhancing social tagging, with the ultimate purpose of improving subject indexing and information retrieval. Design/methodology/approach - Over 11.000 Intute metadata records in politics were used. Totally, 28 politics students were each given four tasks, in which a total of 60 resources were tagged in two different configurations, one with uncontrolled social tags only and another with uncontrolled social tags as well as suggestions from a controlled vocabulary. The controlled vocabulary was DDC comprising also mappings from the Library of Congress Subject Headings. Findings - The results demonstrate the importance of controlled vocabulary suggestions for indexing and retrieval: to help produce ideas of which tags to use, to make it easier to find focus for the tagging, to ensure consistency and to increase the number of access points in retrieval. The value and usefulness of the suggestions proved to be dependent on the quality of the suggestions, both as to conceptual relevance to the user and as to appropriateness of the terminology. Originality/value - No research has investigated the enhancement of social tagging with suggestions from the DDC, an established KOS, in a user trial, comparing social tagging only and social tagging enhanced with the suggestions. This paper is a final reflection on all aspects of the study.
  6. Golub, K.: Automated subject classification of textual web documents (2006) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 5600) [ClassicSimilarity], result of:
          0.024150565 = score(doc=5600,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 5600, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5600)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - To provide an integrated perspective to similarities and differences between approaches to automated classification in different research communities (machine learning, information retrieval and library science), and point to problems with the approaches and automated classification as such. Design/methodology/approach - A range of works dealing with automated classification of full-text web documents are discussed. Explorations of individual approaches are given in the following sections: special features (description, differences, evaluation), application and characteristics of web pages. Findings - Provides major similarities and differences between the three approaches: document pre-processing and utilization of web-specific document characteristics is common to all the approaches; major differences are in applied algorithms, employment or not of the vector space model and of controlled vocabularies. Problems of automated classification are recognized. Research limitations/implications - The paper does not attempt to provide an exhaustive bibliography of related resources. Practical implications - As an integrated overview of approaches from different research communities with application examples, it is very useful for students in library and information science and computer science, as well as for practitioners. Researchers from one community have the information on how similar tasks are conducted in different communities. Originality/value - To the author's knowledge, no review paper on automated text classification attempted to discuss more than one community's approach from an integrated perspective.
  7. Golub, K.; Lykke, M.: Automated classification of web pages in hierarchical browsing (2009) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 3614) [ClassicSimilarity], result of:
          0.024150565 = score(doc=3614,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 3614, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3614)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The purpose of this study is twofold: to investigate whether it is meaningful to use the Engineering Index (Ei) classification scheme for browsing, and then, if proven useful, to investigate the performance of an automated classification algorithm based on the Ei classification scheme. Design/methodology/approach - A user study was conducted in which users solved four controlled searching tasks. The users browsed the Ei classification scheme in order to examine the suitability of the classification systems for browsing. The classification algorithm was evaluated by the users who judged the correctness of the automatically assigned classes. Findings - The study showed that the Ei classification scheme is suited for browsing. Automatically assigned classes were on average partly correct, with some classes working better than others. Success of browsing showed to be correlated and dependent on classification correctness. Research limitations/implications - Further research should address problems of disparate evaluations of one and the same web page. Additional reasons behind browsing failures in the Ei classification scheme also need further investigation. Practical implications - Improvements for browsing were identified: describing class captions and/or listing their subclasses from start; allowing for searching for words from class captions with synonym search (easily provided for Ei since the classes are mapped to thesauri terms); when searching for class captions, returning the hierarchical tree expanded around the class in which caption the search term is found. The need for improvements of classification schemes was also indicated. Originality/value - A user-based evaluation of automated subject classification in the context of browsing has not been conducted before; hence the study also presents new findings concerning methodology.
  8. Golub, K.; Tyrkkö, J.; Hansson, J.; Ahlström, I.: Subject indexing in humanities : a comparison between a local university repository and an international bibliographic service (2020) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 5982) [ClassicSimilarity], result of:
          0.024150565 = score(doc=5982,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 5982, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5982)
      0.2 = coord(1/5)
    
    Abstract
    As the humanities develop in the realm of increasingly more pronounced digital scholarship, it is important to provide quality subject access to a vast range of heterogeneous information objects in digital services. The study aims to paint a representative picture of the current state of affairs of the use of subject index terms in humanities journal articles with particular reference to the well-established subject access needs of humanities researchers, with the purpose of identifying which improvements are needed in this context. Design/methodology/approach The comparison of subject metadata on a sample of 649 peer-reviewed journal articles from across the humanities is conducted in a university repository, against Scopus, the former reflecting local and national policies and the latter being the most comprehensive international abstract and citation database of research output. Findings The study shows that established bibliographic objectives to ensure subject access for humanities journal articles are not supported in either the world's largest commercial abstract and citation database Scopus or the local repository of a public university in Sweden. The indexing policies in the two services do not seem to address the needs of humanities scholars for highly granular subject index terms with appropriate facets; no controlled vocabularies for any humanities discipline are used whatsoever. Originality/value In all, not much has changed since 1990s when indexing for the humanities was shown to lag behind the sciences. The community of researchers and information professionals, today working together on digital humanities projects, as well as interdisciplinary research teams, should demand that their subject access needs be fulfilled, especially in commercial services like Scopus and discovery services.