Search (9 results, page 1 of 1)

  • × author_ss:"Zhang, L."
  1. Zhang, L.; Pan, Y.; Zhang, T.: Focused named entity recognition using machine learning (2004) 0.02
    0.016993519 = product of:
      0.08496759 = sum of:
        0.08496759 = weight(_text_:22 in 4086) [ClassicSimilarity], result of:
          0.08496759 = score(doc=4086,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.46428138 = fieldWeight in 4086, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.09375 = fieldNorm(doc=4086)
      0.2 = coord(1/5)
    
    Date
    15.10.2005 19:57:22
  2. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.01
    0.009660226 = product of:
      0.04830113 = sum of:
        0.04830113 = weight(_text_:it in 231) [ClassicSimilarity], result of:
          0.04830113 = score(doc=231,freq=8.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.31955284 = fieldWeight in 231, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.2 = coord(1/5)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
  3. Zhang, L.: Grasping the structure of journal articles : utilizing the functions of information units (2012) 0.01
    0.008496759 = product of:
      0.042483795 = sum of:
        0.042483795 = weight(_text_:22 in 65) [ClassicSimilarity], result of:
          0.042483795 = score(doc=65,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 65, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=65)
      0.2 = coord(1/5)
    
    Date
    6. 4.2012 18:43:22
  4. Zhang, L.; Lu, W.; Yang, J.: LAGOS-AND : a large gold standard dataset for scholarly author name disambiguation (2023) 0.01
    0.0070806327 = product of:
      0.035403162 = sum of:
        0.035403162 = weight(_text_:22 in 883) [ClassicSimilarity], result of:
          0.035403162 = score(doc=883,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.19345059 = fieldWeight in 883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=883)
      0.2 = coord(1/5)
    
    Date
    22. 1.2023 18:40:36
  5. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 1638) [ClassicSimilarity], result of:
          0.028980678 = score(doc=1638,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 1638, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
      0.2 = coord(1/5)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
  6. Zhang, L.; Olson, H.A.: Distilling abstractions : genre redefining essence versus context (2015) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 5536) [ClassicSimilarity], result of:
          0.028980678 = score(doc=5536,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 5536, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=5536)
      0.2 = coord(1/5)
    
    Abstract
    The construction of concepts achieved by the apparently incompatible ideas of essence and context is examined through genre. Essence is defined by essential characteristics: innate, immutable, independent of context. Unlike essences, contexts are fluid, changing with time and location. Genre has the stability of the essential characteristics that define essence and the fluidity of differing circumstances that define context, thus making it effective for the exploration of essence and context. Controlled vocabularies reveal diachronically and synchronically the stable/fluid ambivalence of genre classes. The Dewey Decimal Classification (DDC1, DDC13, DDC23) exhibits stability (and modest fluidity) in the Divisions, the primary reflection of academic disciplines one hierarchical step below the main classes and the development of the standard subdivisions as a slow multi-edition evolution. Genre serves as a lens for us to better understand essences, contexts, and concepts and their manifestations, classes. Rather than being incompatible opposites, essences and contexts complement each other in the definition of concepts. How these abstractions relate to classification is a question both theoretical and practical to our efforts to further knowledge organization.
  7. Zhang, L.; Rousseau, R.; Glänzel, W.: Diversity of references as an indicator of the interdisciplinarity of journals : taking similarity between subject fields into account (2016) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 2902) [ClassicSimilarity], result of:
          0.024150565 = score(doc=2902,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 2902, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
      0.2 = coord(1/5)
    
    Abstract
    The objective of this article is to further the study of journal interdisciplinarity, or, more generally, knowledge integration at the level of individual articles. Interdisciplinarity is operationalized by the diversity of subject fields assigned to cited items in the article's reference list. Subject fields and subfields were obtained from the Leuven-Budapest (ECOOM) subject-classification scheme, while disciplinary diversity was measured taking variety, balance, and disparity into account. As diversity measure we use a Hill-type true diversity in the sense of Jost and Leinster-Cobbold. The analysis is conducted in 3 steps. In the first part, the properties of this measure are discussed, and, on the basis of these properties it is shown that the measure has the potential to serve as an indicator of interdisciplinarity. In the second part the applicability of this indicator is shown using selected journals from several research fields ranging from mathematics to social sciences. Finally, the often-heard argument, namely, that interdisciplinary research exhibits larger visibility and impact, is studied on the basis of these selected journals. Yet, as only 7 journals, representing a total of 15,757 articles, are studied, albeit chosen to cover a large range of interdisciplinarity, further research is still needed.
  8. Zhang, L.: ¬The knowledge organization education within and beyond the master of library and information science (2023) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 1127) [ClassicSimilarity], result of:
          0.024150565 = score(doc=1127,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 1127, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1127)
      0.2 = coord(1/5)
    
    Abstract
    By analyzing 63 English-speaking institutions that offer ALA-accredited master's programs in library and information studies, this research aims to explore the education for knowl­edge organization (KO) at different levels and across fields. This research examines the KO courses that are the required courses and elective courses in the MLIS programs, that are offered in other master's programs and graduate certificate programs, that are adapted to the undergraduate degree and certificate programs, and that are particularly developed for programs other than MLIS. The findings indicate that the great majority of MLIS programs still have a focus on or a significant component of knowl­edge organization as their required course and include the knowl­edge organization elective courses, particularly library cataloging and classification, on their curriculum. However, there is a variety of the offerings of KO related courses across the programs in an institution or in the same program across the institutions. It shows a promising trend that the traditional and new KO courses play an important role in many other programs, at different levels and across fields. With the conventional, adapted, or innovative content, these courses demonstrate that the principles and skills of knowl­edge organization are applicable to a wide variety of settings, can be integrated with other disciplinary knowl­edge and emerging technologies, and meet the needs of different career pathways and groups of learners.
  9. Zhang, L.; Gou, Z.; Fang, Z.; Sivertsen, G.; Huang, Y.: Who tweets scientific publications? : a large-scale study of tweeting audiences in all areas of research (2023) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 1189) [ClassicSimilarity], result of:
          0.024150565 = score(doc=1189,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 1189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1189)
      0.2 = coord(1/5)
    
    Abstract
    The purpose of this study is to investigate the validity of tweets about scientific publications as an indicator of societal impact by measuring the degree to which the publications are tweeted beyond academia. We introduce methods that allow for using a much larger and broader data set than in previous validation studies. It covers all areas of research and includes almost 40 million tweets by 2.5 million unique tweeters mentioning almost 4 million scientific publications. We find that, although half of the tweeters are external to academia, most of the tweets are from within academia, and most of the external tweets are responses to original tweets within academia. Only half of the tweeted publications are tweeted outside of academia. We conclude that, in general, the tweeting of scientific publications is not a valid indicator of the societal impact of research. However, publications that continue being tweeted after a few days represent recent scientific achievements that catch attention in society. These publications occur more often in the health sciences and in the social sciences and humanities.