Search (25 results, page 1 of 2)

  • × classification_ss:"06.74 / Informationssysteme"
  1. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.02
    0.023821492 = product of:
      0.059553728 = sum of:
        0.024150565 = weight(_text_:it in 1397) [ClassicSimilarity], result of:
          0.024150565 = score(doc=1397,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 1397, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
        0.035403162 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
          0.035403162 = score(doc=1397,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.19345059 = fieldWeight in 1397, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
      0.4 = coord(2/5)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Date
    22. 3.2008 14:29:25
  2. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.02
    0.019094829 = product of:
      0.04773707 = sum of:
        0.017077027 = weight(_text_:it in 150) [ClassicSimilarity], result of:
          0.017077027 = score(doc=150,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.11297898 = fieldWeight in 150, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.03066004 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
          0.03066004 = score(doc=150,freq=6.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.16753313 = fieldWeight in 150, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
      0.4 = coord(2/5)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
  3. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.01588793 = product of:
      0.03971982 = sum of:
        0.025558555 = weight(_text_:it in 1789) [ClassicSimilarity], result of:
          0.025558555 = score(doc=1789,freq=14.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.16909146 = fieldWeight in 1789, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.014161265 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
          0.014161265 = score(doc=1789,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.07738023 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
      0.4 = coord(2/5)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  4. Thissen, F.: Screen-Design-Handbuch : Effektiv informieren und kommunizieren mit Multimedia (2001) 0.01
    0.008496759 = product of:
      0.042483795 = sum of:
        0.042483795 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
          0.042483795 = score(doc=1781,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 1781, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=1781)
      0.2 = coord(1/5)
    
    Date
    22. 3.2008 14:35:21
  5. Bleuel, J.: Online Publizieren im Internet : elektronische Zeitschriften und Bücher (1995) 0.01
    0.0070806327 = product of:
      0.035403162 = sum of:
        0.035403162 = weight(_text_:22 in 1708) [ClassicSimilarity], result of:
          0.035403162 = score(doc=1708,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.19345059 = fieldWeight in 1708, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1708)
      0.2 = coord(1/5)
    
    Date
    22. 3.2008 16:15:37
  6. Medienkompetenz : wie lehrt und lernt man Medienkompetenz? (2003) 0.01
    0.0056645065 = product of:
      0.02832253 = sum of:
        0.02832253 = weight(_text_:22 in 2249) [ClassicSimilarity], result of:
          0.02832253 = score(doc=2249,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.15476047 = fieldWeight in 2249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=2249)
      0.2 = coord(1/5)
    
    Date
    22. 3.2008 18:05:16
  7. Research and advanced technology for digital libraries : 7th European conference, ECDL2003 Trondheim, Norway, August 17-22, 2003. Proceedings (2003) 0.01
    0.0056645065 = product of:
      0.02832253 = sum of:
        0.02832253 = weight(_text_:22 in 2426) [ClassicSimilarity], result of:
          0.02832253 = score(doc=2426,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.15476047 = fieldWeight in 2426, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=2426)
      0.2 = coord(1/5)
    
  8. Research and advanced technology for digital libraries : 10th European conference ; proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006 ; proceedings (2006) 0.01
    0.0056645065 = product of:
      0.02832253 = sum of:
        0.02832253 = weight(_text_:22 in 2428) [ClassicSimilarity], result of:
          0.02832253 = score(doc=2428,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.15476047 = fieldWeight in 2428, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=2428)
      0.2 = coord(1/5)
    
  9. Net effects : how librarians can manage the unintended consequenees of the Internet (2003) 0.01
    0.005464649 = product of:
      0.027323244 = sum of:
        0.027323244 = weight(_text_:it in 1796) [ClassicSimilarity], result of:
          0.027323244 = score(doc=1796,freq=16.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.18076637 = fieldWeight in 1796, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.015625 = fieldNorm(doc=1796)
      0.2 = coord(1/5)
    
    Abstract
    In this collection of nearly 50 articles written by librarians, computer specialists, and other information professionals, the reader finds 10 chapters, each devoted to a problem or a side effect that has emerged since the introduction of the Internet: control over selection, survival of the book, training users, adapting to users' expectations, access issues, cost of technology, continuous retraining, legal issues, disappearing data, and how to avoid becoming blind sided. After stating a problem, each chapter offers solutions that are subsequently supported by articles. The editor's comments, which appear throughout the text, are an added bonus, as are the sections concluding the book, among them a listing of useful URLs, a works-cited section, and a comprehensive index. This book has much to recommend it, especially the articles, which are not only informative, thought-provoking, and interesting but highly readable and accessible as well. An indispensable tool for all librarians.
    Footnote
    Rez. in: JASIST 55(2004) no.11, S.1025-1026 (D.E. Agosto): ""Did you ever feel as though the Internet has caused you to lose control of your library?" So begins the introduction to this volume of over 50 articles, essays, library policies, and other documents from a variety of sources, most of which are library journals aimed at practitioners. Volume editor Block has a long history of library service as well as an active career as an online journalist. From 1977 to 1999 she was the Associate Director of Public Services at the St. Ambrose University library in Davenport, Iowa. She was also a Fox News Online weekly columnist from 1998 to 2000. She currently writes for and publishes the weekly ezine Exlibris, which focuses an the use of computers, the Internet, and digital databases to improve library services. Despite the promising premise of this book, the final product is largely a disappointment because of the superficial coverage of its issues. A listing of the most frequently represented sources serves to express the general level and style of the entries: nine articles are reprinted from Computers in Libraries, five from Library Journal, four from Library Journal NetConnect, four from ExLibris, four from American Libraries, three from College & Research Libraries News, two from Online, and two from The Chronicle of Higher Education. Most of the authors included contributed only one item, although Roy Tennant (manager of the California Digital Library) authored three of the pieces, and Janet L. Balas (library information systems specialist at the Monroeville Public Library in Pennsylvania) and Karen G. Schneider (coordinator of lii.org, the Librarians' Index to the Internet) each wrote two. Volume editor Block herself wrote six of the entries, most of which have been reprinted from ExLibris. Reading the volume is muck like reading an issue of one of these journals-a pleasant experience that discusses issues in the field without presenting much research. Net Effects doesn't offer much in the way of theory or research, but then again it doesn't claim to. Instead, it claims to be an "idea book" (p. 5) with practical solutions to Internet-generated library problems. While the idea is a good one, little of the material is revolutionary or surprising (or even very creative), and most of the solutions offered will already be familiar to most of the book's intended audience.
    Unlike muck of the professional library literature, Net Effects is not an open-aimed embrace of technology. Block even suggests that it is helpful to have a Luddite or two an each library staff to identify the setbacks associated with technological advances in the library. Each of the book's 10 chapters deals with one Internet-related problem, such as "Chapter 4-The Shifted Librarian: Adapting to the Changing Expectations of Our Wired (and Wireless) Users," or "Chapter 8-Up to Our Ears in Lawyers: Legal Issues Posed by the Net." For each of these 10 problems, multiple solutions are offered. For example, for "Chapter 9-Disappearing Data," four solutions are offered. These include "Link-checking," "Have a technological disaster plan," "Advise legislators an the impact proposed laws will have," and "Standards for preservation of digital information." One article is given to explicate each of these four solutions. A short bibliography of recommended further reading is also included for each chapter. Block provides a short introduction to each chapter, and she comments an many of the entries. Some of these comments seem to be intended to provide a research basis for the proposed solutions, but they tend to be vague generalizations without citations, such as, "We know from research that students would rather ask each other for help than go to adults. We can use that (p. 91 )." The original publication dates of the entries range from 1997 to 2002, with the bulk falling into the 2000-2002 range. At up to 6 years old, some of the articles seem outdated, such as a 2000 news brief announcing the creation of the first "customizable" public library Web site (www.brarydog.net). These critiques are not intended to dismiss the volume entirely. Some of the entries are likely to find receptive audiences, such as a nuts-and-bolts instructive article for making Web sites accessible to people with disabilities. "Providing Equitable Access," by Cheryl H. Kirkpatrick and Catherine Buck Morgan, offers very specific instructions, such as how to renovate OPAL workstations to suit users with "a wide range of functional impairments." It also includes a useful list of 15 things to do to make a Web site readable to most people with disabilities, such as, "You can use empty (alt) tags (alt="') for images that serve a purely decorative function. Screen readers will skip empty (alt) tags" (p. 157). Information at this level of specificity can be helpful to those who are faced with creating a technological solution for which they lack sufficient technical knowledge or training.
    Some of the pieces are more captivating than others and less "how-to" in nature, providing contextual discussions as well as pragmatic advice. For example, Darlene Fichter's "Blogging Your Life Away" is an interesting discussion about creating and maintaining blogs. (For those unfamiliar with the term, blogs are frequently updated Web pages that ]ist thematically tied annotated links or lists, such as a blog of "Great Websites of the Week" or of "Fun Things to Do This Month in Patterson, New Jersey.") Fichter's article includes descriptions of sample blogs and a comparison of commercially available blog creation software. Another article of note is Kelly Broughton's detailed account of her library's experiences in initiating Web-based reference in an academic library. "Our Experiment in Online Real-Time Reference" details the decisions and issues that the Jerome Library staff at Bowling Green State University faced in setting up a chat reference service. It might be useful to those finding themselves in the same situation. This volume is at its best when it eschews pragmatic information and delves into the deeper, less ephemeral libraryrelated issues created by the rise of the Internet and of the Web. One of the most thought-provoking topics covered is the issue of "the serials pricing crisis," or the increase in subscription prices to journals that publish scholarly work. The pros and cons of moving toward a more free-access Web-based system for the dissemination of peer-reviewed material and of using university Web sites to house scholars' other works are discussed. However, deeper discussions such as these are few, leaving the volume subject to rapid aging, and leaving it with an audience limited to librarians looking for fast technological fixes."
  10. Belew, R.K.: Finding out about : a cognitive perspective on search engine technology and the WWW (2001) 0.01
    0.005464649 = product of:
      0.027323244 = sum of:
        0.027323244 = weight(_text_:it in 3346) [ClassicSimilarity], result of:
          0.027323244 = score(doc=3346,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.18076637 = fieldWeight in 3346, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.03125 = fieldNorm(doc=3346)
      0.2 = coord(1/5)
    
    Abstract
    The World Wide Web is rapidly filling with more text than anyone could have imagined even a short time ago, but the task of isolating relevant parts of this vast information has become just that much more daunting. Richard Belew brings a cognitive perspective to the study of information retrieval as a discipline within computer science. He introduces the idea of Finding Out About (FDA) as the process of actively seeking out information relevant to a topic of interest and describes its many facets - ranging from creating a good characterization of what the user seeks, to what documents actually mean, to methods of inferring semantic clues about each document, to the problem of evaluating whether our search engines are performing as we have intended. Finding Out About explains how to build the tools that are useful for searching collections of text and other media. In the process it takes a close look at the properties of textual documents that do not become clear until very large collections of them are brought together and shows that the construction of effective search engines requires knowledge of the statistical and mathematical properties of linguistic phenomena, as well as an appreciation for the cognitive foundation we bring to the task as language users. The unique approach of this book is its even handling of the phenomena of both numbers and words, making it accessible to a wide audience. The textbook is usable in both undergraduate and graduate classes on information retrieval, library science, and computational linguistics. The text is accompanied by a CD-ROM that contains a hypertext version of the book, including additional topics and notes not present in the printed edition. In addition, the CD contains the full text of C.J. "Keith" van Rijsbergen's famous textbook, Information Retrieval (now out of print). Many active links from Belew's to van Rijsbergen's hypertexts help to unite the material. Several test corpora and indexing tools are provided, to support the design of your own search engine. Additional exercises using these corpora and code are available to instructors. Also supporting this book is a Web site that will include recent additions to the book, as well as links to sites of new topics and methods.
  11. TREC: experiment and evaluation in information retrieval (2005) 0.01
    0.00540023 = product of:
      0.02700115 = sum of:
        0.02700115 = weight(_text_:it in 636) [ClassicSimilarity], result of:
          0.02700115 = score(doc=636,freq=10.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.17863545 = fieldWeight in 636, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.01953125 = fieldNorm(doc=636)
      0.2 = coord(1/5)
    
    Footnote
    Rez. in: JASIST 58(2007) no.6, S.910-911 (J.L. Vicedo u. J. Gomez): "The Text REtrieval Conference (TREC) is a yearly workshop hosted by the U.S. government's National Institute of Standards and Technology (NIST) that fosters and supports research in information retrieval as well as speeding the transfer of technology between research labs and industry. Since 1992, TREC has provided the infrastructure necessary for large-scale evaluations of different text retrieval methodologies. TREC impact has been very important and its success has been mainly supported by its continuous adaptation to the emerging information retrieval needs. Not in vain, TREC has built evaluation benchmarks for more than 20 different retrieval problems such as Web retrieval, speech retrieval, or question-answering. The large and intense trajectory of annual TREC conferences has resulted in an immense bulk of documents reflecting the different eval uation and research efforts developed. This situation makes it difficult sometimes to observe clearly how research in information retrieval (IR) has evolved over the course of TREC. TREC: Experiment and Evaluation in Information Retrieval succeeds in organizing and condensing all this research into a manageable volume that describes TREC history and summarizes the main lessons learned. The book is organized into three parts. The first part is devoted to the description of TREC's origin and history, the test collections, and the evaluation methodology developed. The second part describes a selection of the major evaluation exercises (tracks), and the third part contains contributions from research groups that had a large and remarkable participation in TREC. Finally, Karen Spark Jones, one of the main promoters of research in IR, closes the book with an epilogue that analyzes the impact of TREC on this research field.
    ... TREC: Experiment and Evaluation in Information Retrieval is a reliable and comprehensive review of the TREC program and has been adopted by NIST as the official history of TREC (see http://trec.nist.gov). We were favorably surprised by the book. Well structured and written, chapters are self-contained and the existence of references to specialized and more detailed publications is continuous, which makes it easier to expand into the different aspects analyzed in the text. This book succeeds in compiling TREC evolution from its inception in 1992 to 2003 in an adequate and manageable volume. Thanks to the impressive effort performed by the authors and their experience in the field, it can satiate the interests of a great variety of readers. While expert researchers in the IR field and IR-related industrial companies can use it as a reference manual, it seems especially useful for students and non-expert readers willing to approach this research area. Like NIST, we would recommend this reading to anyone who may be interested in textual information retrieval."
  12. Survey of text mining : clustering, classification, and retrieval (2004) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 804) [ClassicSimilarity], result of:
          0.024150565 = score(doc=804,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 804, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=804)
      0.2 = coord(1/5)
    
    Abstract
    Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
  13. Floridi, L.: Philosophy and computing : an introduction (1999) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 823) [ClassicSimilarity], result of:
          0.024150565 = score(doc=823,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 823, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=823)
      0.2 = coord(1/5)
    
    Abstract
    Philosophy and Computing explores each of the following areas of technology: the digital revolution; the computer; the Internet and the Web; CD-ROMs and Mulitmedia; databases, textbases, and hypertexts; Artificial Intelligence; the future of computing. Luciano Floridi shows us how the relationship between philosophy and computing provokes a wide range of philosophical questions: is there a philosophy of information? What can be achieved by a classic computer? How can we define complexity? What are the limits of quantam computers? Is the Internet an intellectual space or a polluted environment? What is the paradox in the Strong Artificial Intlligence program? Philosophy and Computing is essential reading for anyone wishing to fully understand both the development and history of information and communication technology as well as the philosophical issues it ultimately raises. 'The most careful and scholarly book to be written on castles in a generation.'
  14. White, R.W.; Roth, R.A.: Exploratory search : beyond the query-response paradigm (2009) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 0) [ClassicSimilarity], result of:
          0.024150565 = score(doc=0,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 0, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=0)
      0.2 = coord(1/5)
    
    Abstract
    As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.
  15. Colomb, R.M.: Information spaces : the architecture of cyberspace (2002) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 262) [ClassicSimilarity], result of:
          0.024150565 = score(doc=262,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=262)
      0.2 = coord(1/5)
    
    Abstract
    The Architecture of Cyberspace is aimed at students taking information management as a minor in their course as well as those who manage document collections but who are not professional librarians. The first part of this book looks at how users find documents and the problems they have; the second part discusses how to manage the information space using various tools such as classification and controlled vocabularies. It also explores the general issues of publishing, including legal considerations, as well the main issues of creating and managing archives. Supported by exercises and discussion questions at the end of each chapter, the book includes some sample assignments suitable for use with students of this subject. A glossary is also provided to help readers understand the specialised vocabulary and the key concepts in the design and assessment of information spaces.
  16. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.00
    0.004781568 = product of:
      0.02390784 = sum of:
        0.02390784 = weight(_text_:it in 1981) [ClassicSimilarity], result of:
          0.02390784 = score(doc=1981,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15817058 = fieldWeight in 1981, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
      0.2 = coord(1/5)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
  17. Weinberger, D.: Everything is miscellaneous : the power of the new digital disorder (2007) 0.00
    0.004781568 = product of:
      0.02390784 = sum of:
        0.02390784 = weight(_text_:it in 2862) [ClassicSimilarity], result of:
          0.02390784 = score(doc=2862,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15817058 = fieldWeight in 2862, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2862)
      0.2 = coord(1/5)
    
    Abstract
    Human beings are information omnivores: we are constantly collecting, labeling, and organizing data. But today, the shift from the physical to the digital is mixing, burning, and ripping our lives apart. In the past, everything had its one place--the physical world demanded it--but now everything has its places: multiple categories, multiple shelves. Simply put, everything is suddenly miscellaneous. In Everything Is Miscellaneous, David Weinberger charts the new principles of digital order that are remaking business, education, politics, science, and culture. In his rollicking tour of the rise of the miscellaneous, he examines why the Dewey decimal system is stretched to the breaking point, how Rand McNally decides what information not to include in a physical map (and why Google Earth is winning that battle), how Staples stores emulate online shopping to increase sales, why your children's teachers will stop having them memorize facts, and how the shift to digital music stands as the model for the future in virtually every industry. Finally, he shows how by "going miscellaneous," anyone can reap rewards from the deluge of information in modern work and life. From A to Z, Everything Is Miscellaneous will completely reshape the way you think--and what you know--about the world.
    Footnote
    Rez. in: Publishers Weekly. May 2007: "In a high-minded twist on the Internet-has-changed-everything book, Weinberger (Small Pieces Loosely Joined) joins the ranks of social thinkers striving to construct new theories around the success of Google and Wikipedia. Organization or, rather, lack of it, is the key: the author insists that "we have to get rid of the idea that there's a best way of organizing the world." Building on his earlier works' discussions of the Internet-driven shift in power to users and consumers, Weinberger notes that "our homespun ways of maintaining order are going to break-they're already breaking-in the digital world." Today's avalanche of fresh information, Weinberger writes, requires relinquishing control of how we organize pretty much everything; he envisions an ever-changing array of "useful, powerful and beautiful ways to make sense of our world." Perhaps carried away by his thesis, the author gets into extended riffs on topics like the history of classification and the Dewey Decimal System. At the point where readers may want to turn his musings into strategies for living or doing business, he serves up intriguing but not exactly helpful epigrams about "the third order of order" and "useful miscellaneousness." But the book's call to embrace complexity will influence thinking about "the newly miscellanized world.""
  18. Levy, S.: In the plex : how Google thinks, works, and shapes our lives (2011) 0.00
    0.004781568 = product of:
      0.02390784 = sum of:
        0.02390784 = weight(_text_:it in 9) [ClassicSimilarity], result of:
          0.02390784 = score(doc=9,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15817058 = fieldWeight in 9, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.02734375 = fieldNorm(doc=9)
      0.2 = coord(1/5)
    
    Abstract
    Few companies in history have ever been as successful and as admired as Google, the company that has transformed the Internet and become an indispensable part of our lives. How has Google done it? Veteran technology reporter Steven Levy was granted unprecedented access to the company, and in this revelatory book he takes readers inside Google headquarters-the Googleplex-to show how Google works. While they were still students at Stanford, Google cofounders Larry Page and Sergey Brin revolutionized Internet search. They followed this brilliant innovation with another, as two of Google's earliest employees found a way to do what no one else had: make billions of dollars from Internet advertising. With this cash cow (until Google's IPO nobody other than Google management had any idea how lucrative the company's ad business was), Google was able to expand dramatically and take on other transformative projects: more efficient data centers, open-source cell phones, free Internet video (YouTube), cloud computing, digitizing books, and much more. The key to Google's success in all these businesses, Levy reveals, is its engineering mind-set and adoption of such Internet values as speed, openness, experimentation, and risk taking. After its unapologetically elitist approach to hiring, Google pampers its engineers-free food and dry cleaning, on-site doctors and masseuses-and gives them all the resources they need to succeed. Even today, with a workforce of more than 23,000, Larry Page signs off on every hire. But has Google lost its innovative edge? It stumbled badly in China-Levy discloses what went wrong and how Brin disagreed with his peers on the China strategy-and now with its newest initiative, social networking, Google is chasing a successful competitor for the first time. Some employees are leaving the company for smaller, nimbler start-ups. Can the company that famously decided not to be evil still compete? No other book has ever turned Google inside out as Levy does with In the Plex.
  19. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0043201842 = product of:
      0.02160092 = sum of:
        0.02160092 = weight(_text_:it in 92) [ClassicSimilarity], result of:
          0.02160092 = score(doc=92,freq=10.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.14290836 = fieldWeight in 92, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.015625 = fieldNorm(doc=92)
      0.2 = coord(1/5)
    
    Footnote
    Rez. in: JASIST 56(2005) no.2, S.215-216 (A. Heath): "What is small, thoroughly organized, and easy to understand? Well, it's Heting Chu's latest book an information retrieval. A very welcome release, this small literary addition to the field (only 248 pages) contains a concise and weIl-organized discussion of every major topic in information retrieval. The often-complex field of information retrieval is presented from its origin in the early 1950s to the present day. The organization of this text is top-notch, thus making this an easy read for even the novice. Unlike other titles in this area, Chu's user-friendly style of writing is done an purpose to properly introduce newcomers to the field in a less intimidating way. As stated by the author in the Preface, the purpose of the book is to "present a systematic, thorough yet nontechnical view of the field by using plain language to explain complex subjects." Chu has definitely struck up the right combination of ingredients. In a field so broad and complex, a well-organized presentation of topics that don't trip an themselves is essential. The use of plain language where possible is also a good choice for this topic because it allows one to absorb topics that are, by nature, not as easy to grasp. For instance, Chapters 6 and 7, which cover retrieval approaches and techniques, an often painstaking topic for many students and teachers is deftly handled with the use of tables that can be used to compare and contrast the various models discussed. I particularly loved Chu's use of Koll's 2000 article from the Bulletin of the American Society for Information Science to explain subject searching at the beginning of Chapter 6, which discusses the differences between browsing and searching. The Koll article uses the task of finding a needle in a haystack as an analogy.
    Chu's intent with this book is clear throughout the entire text. With this presentation, she writes with the novice in mind or as she puls it in the Preface, "to anyone who is interested in learning about the field, particularly those who are new to it." After reading the text, I found that this book is also an appropriate reference book for those who are somewhat advanced in the field. I found the chapters an information retrieval models and techniques, metadata, and AI very informative in that they contain information that is often rather densely presented in other texts. Although, I must say, the metadata section in Chapter 3 is pretty basic and contains more questions about the area than information. . . . It is an excellent book to have in the classroom, an your bookshelf, etc. It reads very well and is written with the reader in mind. If you are in need of a more advanced or technical text an the subject, this is not the book for you. But, if you are looking for a comprehensive, manual that can be used as a "flip-through," then you are in luck."
  20. Langville, A.N.; Meyer, C.D.: Google's PageRank and beyond : the science of search engine rankings (2006) 0.00
    0.004098487 = product of:
      0.020492435 = sum of:
        0.020492435 = weight(_text_:it in 6) [ClassicSimilarity], result of:
          0.020492435 = score(doc=6,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.13557479 = fieldWeight in 6, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0234375 = fieldNorm(doc=6)
      0.2 = coord(1/5)
    
    Abstract
    Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other Web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of Web page rankings, "Google's PageRank and Beyond" supplies the answers to these and other questions and more. The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research. The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample Web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text. Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided. It includes: many illustrative examples and entertaining asides; MATLAB code; accessible and informal style; and complete and self-contained section for mathematics review.

Languages

  • e 21
  • d 4

Types

  • m 25
  • s 10

Subjects

Classifications