Search (3 results, page 1 of 1)

  • × classification_ss:"ST 306"
  • × language_ss:"e"
  1. Helbig, H.: Knowledge representation and the semantics of natural language (2014) 0.01
    0.008366001 = product of:
      0.041830003 = sum of:
        0.041830003 = weight(_text_:it in 2396) [ClassicSimilarity], result of:
          0.041830003 = score(doc=2396,freq=6.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27674085 = fieldWeight in 2396, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2396)
      0.2 = coord(1/5)
    
    Abstract
    Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the preservation of cultural achievements and their transmission from one generation to the other. During the last few decades, the flod of digitalized information has been growing tremendously. This tendency will continue with the globalisation of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical understanding and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this context, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the generation of natural language expressions from formal representations. This book presents a method for the semantic representation of natural language expressions (texts, sentences, phrases, etc.) which can be used as a universal knowledge representation paradigm in the human sciences, like linguistics, cognitive psychology, or philosophy of language, as well as in computational linguistics and in artificial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
  2. Manning, C.D.; Schütze, H.: Foundations of statistical natural language processing (2000) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 1603) [ClassicSimilarity], result of:
          0.028980678 = score(doc=1603,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 1603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=1603)
      0.2 = coord(1/5)
    
    Abstract
    Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical Natural Language Processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
  3. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.01
    0.005464649 = product of:
      0.027323244 = sum of:
        0.027323244 = weight(_text_:it in 4041) [ClassicSimilarity], result of:
          0.027323244 = score(doc=4041,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.18076637 = fieldWeight in 4041, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.03125 = fieldNorm(doc=4041)
      0.2 = coord(1/5)
    
    Abstract
    Class-tested and coherent, this textbook teaches information retrieval, including web search, text classification, and text clustering from basic concepts. Ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students. Slides and additional exercises are available for lecturers. - This book provides what Salton and Van Rijsbergen both failed to achieve. Even more important, unlike some other books in IR, the authors appear to care about making the theory as accessible as possible to the reader, on occasion including short primers to certain topics or choosing to explain difficult concepts using simplified approaches. Its coverage [is] excellent, the quality of writing high and I was surprised how much I learned from reading it. I think the online resources are impressive.