Search (11 results, page 1 of 1)

  • × subject_ss:"Information organization"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 987) [ClassicSimilarity], result of:
          0.028980678 = score(doc=987,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.042483795 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
          0.042483795 = score(doc=987,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
      0.4 = coord(2/5)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
  2. Anderson, J.D.; Perez-Carballo, J.: Information retrieval design : principles and options for information description, organization, display, and access in information retrieval databases, digital libraries, catalogs, and indexes (2005) 0.02
    0.017881094 = product of:
      0.04470273 = sum of:
        0.02700115 = weight(_text_:it in 1833) [ClassicSimilarity], result of:
          0.02700115 = score(doc=1833,freq=10.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.17863545 = fieldWeight in 1833, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1833)
        0.017701581 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
          0.017701581 = score(doc=1833,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.09672529 = fieldWeight in 1833, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1833)
      0.4 = coord(2/5)
    
    Content
    Inhalt: Chapters 2 to 5: Scopes, Domains, and Display Media (pp. 47-102) Chapters 6 to 8: Documents, Analysis, and Indexing (pp. 103-176) Chapters 9 to 10: Exhaustivity and Specificity (pp. 177-196) Chapters 11 to 13: Displayed/Nondisplayed Indexes, Syntax, and Vocabulary Management (pp. 197-364) Chapters 14 to 16: Surrogation, Locators, and Surrogate Displays (pp. 365-390) Chapters 17 and 18: Arrangement and Size of Displayed Indexes (pp. 391-446) Chapters 19 to 21: Search Interface, Record Format, and Full-Text Display (pp. 447-536) Chapter 22: Implementation and Evaluation (pp. 537-541)
    Footnote
    Rez. in JASIST 57(2006) no.10, S.1412-1413 (R. W. White): "Information Retrieval Design is a textbook that aims to foster the intelligent user-centered design of databases for Information Retrieval (IR). The book outlines a comprehensive set of 20 factors. chosen based on prior research and the authors' experiences. that need to he considered during the design process. The authors provide designers with information on those factors to help optimize decision making. The book does not cover user-needs assessment, implementation of IR databases, or retries al systems, testing. or evaluation. Most textbooks in IR do not offer a substantive walkthrough of the design factors that need to be considered Mien des eloping IR databases. Instead. they focus on issues such as the implementation of data structures, the explanation of search algorithms, and the role of human-machine interaction in the search process. The book touches on all three, but its focus is on designing databases that can be searched effectively. not the tools to search them. This is an important distinction: despite its title. this book does not describe how to build retrieval systems. Professor Anderson utilizes his wealth of experience in cataloging and classification to bring a unique perspective on IR database design that may be useful for novices. for developers seeking to make sense of the design process, and for students as a text to supplement classroom tuition. The foreword and preface. by Jessica Milstead and James Anderson. respectively, are engaging and worthwhile reading. It is astounding that it has taken some 20 years for anyone to continue the stork of Milstead and write as extensively as Anderson does about such an important issue as IR database design. The remainder of the book is divided into two parts: Introduction and Background Issues and Design Decisions. Part 1 is a reasonable introduction and includes a glossary of the terminology that authors use in the book. It is very helpful to have these definitions early on. but the subject descriptors in the right margin are distracting and do not serve their purpose as access points to the text. The terminology is useful to have. as the authors definitions of concepts do not lit exactly with what is traditionally accepted in IR. For example. they use the term 'message' to icier to what would normally be called .'document" or "information object." and do not do a good job at distinguishing between "messages" and "documentary units". Part 2 describes components and attributes of 1R databases to help designers make design choices. The book provides them with information about the potential ramifications of their decisions and advocates a user-oriented approach to making them. Chapters are arranged in a seemingly sensible order based around these factors. and the authors remind us of the importance of integrating them. The authors are skilled at selecting the important factors in the development of seemingly complex entities, such as IR databases: how es er. the integration of these factors. or the interaction between them. is not handled as well as perhaps should be. Factors are presented in the order in which the authors feel then should be addressed. but there is no chapter describing how the factors interact. The authors miss an opportunity at the beginning of Part 2 where they could illustrate using a figure the interactions between the 20 factors they list in a way that is not possible with the linear structure of the book.
    . . . Those interested in using the book to design IR databases can work through the chapters in the order provided and end up with a set of requirements for database design. The steps outlined in this book can be rearranged in numerous orders depending on the particular circumstances. This book would benefit from a discussion of what orders are appropriate for different circumstances and bow the requirements outlined interact. I come away from Information Retrieval Design with mixed, although mainly positive feelings. Even though the aims of this book are made clear from the outset, it was still a disappointment to see issues such as implementation and evaluation covered in only a cursory manner. The book is very well structured. well written, and operates in a part of the space that bas been neglected for too long. The authors whet my appetite with discussion of design, and I would have liked to have heard a bit more about what happens in requirements' elicitation before the design issues base been identified and to impIementation after they have been addressed. Overall, the book is a comprehensive review of previous research supplemented by the authors' views on IR design. This book focuses on breadth of coverage rather than depth of coverage and is therefore potentially of more use to novices in the field. The writing style is clear, and the authors knowledge of the subject area is undoubted. I wouId recommend this book to anyone who wants to learn about IR database design and take advantage of the experience and insights of Anderson, one of tile visionaries it the field."
  3. Abbott, R.: ¬The world as information : overload and personal design (1999) 0.01
    0.011592272 = product of:
      0.057961356 = sum of:
        0.057961356 = weight(_text_:it in 5939) [ClassicSimilarity], result of:
          0.057961356 = score(doc=5939,freq=8.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.38346338 = fieldWeight in 5939, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=5939)
      0.2 = coord(1/5)
    
    Abstract
    This book takes the broadest view of information, considering it as a phenomenon in its own roght, rather than exploring the technology for handling it. It is very much concerned with the meaning of information - and what we as individuals do with it
  4. ¬The discipline of organizing (2013) 0.01
    0.0077281813 = product of:
      0.038640905 = sum of:
        0.038640905 = weight(_text_:it in 2172) [ClassicSimilarity], result of:
          0.038640905 = score(doc=2172,freq=8.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 2172, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.03125 = fieldNorm(doc=2172)
      0.2 = coord(1/5)
    
    Abstract
    Organizing is such a common activity that we often do it without thinking much about it. In our daily lives we organize physical things--books on shelves, cutlery in kitchen drawers--and digital things--Web pages, MP3 files, scientific datasets. Millions of people create and browse Web sites, blog, tag, tweet, and upload and download content of all media types without thinking "I'm organizing now" or "I'm retrieving now." This book offers a framework for the theory and practice of organizing that integrates information organization (IO) and information retrieval (IR), bridging the disciplinary chasms between Library and Information Science and Computer Science, each of which views and teaches IO and IR as separate topics and in substantially different ways. It introduces the unifying concept of an Organizing System--an intentionally arranged collection of resources and the interactions they support--and then explains the key concepts and challenges in the design and deployment of Organizing Systems in many domains, including libraries, museums, business information systems, personal information management, and social computing. Intended for classroom use or as a professional reference, the book covers the activities common to all organizing systems: identifying resources to be organized; organizing resources by describing and classifying them; designing resource-based interactions; and maintaining resources and organization over time. The book is extensively annotated with disciplinary-specific notes to ground it with relevant concepts and references of library science, computing, cognitive science, law, and business.
  5. a cataloger's primer : Metadata (2005) 0.01
    0.006389639 = product of:
      0.031948194 = sum of:
        0.031948194 = weight(_text_:it in 133) [ClassicSimilarity], result of:
          0.031948194 = score(doc=133,freq=14.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.21136433 = fieldWeight in 133, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.01953125 = fieldNorm(doc=133)
      0.2 = coord(1/5)
    
    Footnote
    Part II consists of five papers on specific metadata standards and applications. Anita Coleman presents an element-by-element description of how to create Dublin Core metadata for Web resources to be included in a library catalog, using principles inspired by cataloging practice, in her paper "From Cataloging to Metadata: Dublin Core Records for the Library Catalog." The next three papers provide especially excellent introductory overviews of three diverse types of metadata-related standards: "Metadata Standards for Archival Control: An Introduction to EAD and EAC" by Alexander C. Thurman, "Introduction to XML" by Patrick Yott, and "METS: the Metadata Encoding and Transmission Standard" by Linda Cantara. Finally, Michael Chopey offers a superb and most useful overview of "Planning and Implementing a Metadata-Driven Digital Repository." Although all of the articles in this book contain interesting, often illuminating, and potentially useful information, not all serve equally well as introductory material for working catalogers not already familiar with metadata. It would be difficult to consider this volume, taken as a whole, as truly a "primer" for catalog librarians, as the subtitle implies. The content of the articles is too much a mix of introductory essays and original research, some of it at a relatively more advanced level. The collection does not approach the topic in the kind of coherent, systematic, or comprehensive way that would be necessary for a true "primer" or introductory textbook. While several of the papers would be quite appropriate for a primer, such a text would need to include, among other things, coverage of other metadata schemes and protocols such as TEI, VRA, and OAI, which are missing here. That having been said, however, Dr. Smiraglia's excellent introduction to the volume itself serves as a kind of concise, well-written "mini-primer" for catalogers new to metadata. It succinctly covers definitions of metadata, basic concepts, content designation and markup languages, metadata for resource description, including short overviews of TEI, DC, EAD, and AACR2/MARC21, and introduces the papers included in the book. In the conclusion to this essay, Dr. Smiraglia says about the book: "In the end the contents go beyond the definition of primer as `introductory textbook.' But the authors have collectively compiled a thought-provoking volume about the uses of metadata" (p. 15). This is a fair assessment of the work taken as a whole. In this reviewer's opinion, there is to date no single introductory textbook on metadata that is fully satisfactory for both working catalogers and for library and information science (LIS) students who may or may not have had exposure to cataloging. But there are a handful of excellent books that serve different aspects of that function. These include the following recent publications:
    - Caplan, Priscilla. 2003. Metadata fundamentals for all librarians. Chicago: ALA Editions. - Gorman, G.E. and Daniel G. Dorner, eds. 2004. Metadata applications and management. International yearbook of library and information management 2003/2004. Lanham, Md.: Scarecrow Press. - Intner, Sheila S., Susan S. Lazinger and Jean Weihs. 2006. Metadata and its impact on libraries. Westport, Conn.: Libraries Unlimited. - Haynes, David. 2004. Metadata for information management and retrieval. London: Facet. - Hillmann, Diane I. and Elaine L. Westbrooks, eds. 2004. Metadata in practice. Chicago: American Library Association. Metadata: A Cataloger's Primer compares favorably with these texts, and like them has its own special focus and contribution to make to the introductorylevel literature on metadata. Although the focus, purpose, and nature of the contents are different, this volume bears a similarity to the Hillmann and Westbrooks text insofar as it consists of a collection of papers written by various authors tied together by a general, common theme. In conclusion, this volume makes a significant contribution to the handful of books that attempt to present introductory level information about metadata to catalog librarians and students. Although it does not serve fully satisfactorily as a stand-alone textbook for an LIS course nor as a single unified and comprehensive introduction for catalogers, it, like the others mentioned above, could serve as an excellent supplementary LIS course text, and it is highly worthwhile reading for working catalogers who want to learn more about metadata, as well as librarians and instructors already well-versed in metadata topics."
  6. Golub, K.: Subject access to information : an interdisciplinary approach (2015) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 134) [ClassicSimilarity], result of:
          0.028980678 = score(doc=134,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=134)
      0.2 = coord(1/5)
    
    Abstract
    Drawing on the research of experts from the fields of computing and library science, this ground-breaking work will show you how to combine two very different approaches to classification to create more effective, user-friendly information-retrieval systems. * Provides an interdisciplinary overview of current and potential approaches to organizing information by subject * Covers both pure computer science and pure library science topics in easy-to-understand language accessible to audiences from both disciplines * Reviews technological standards for representation, storage, and retrieval of varied knowledge-organization systems and their constituent elements * Suggests a collaborative approach that will reduce duplicate efforts and make it easier to find solutions to practical problems.
  7. Abbas, J.: Structures for organizing knowledge : exploring taxonomies, ontologies, and other schemas (2010) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 480) [ClassicSimilarity], result of:
          0.024150565 = score(doc=480,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 480, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=480)
      0.2 = coord(1/5)
    
    Abstract
    LIS professionals use structures for organizing knowledge when they catalog and classify objects in the collection, when they develop databases, when they design customized taxonomies, or when they search online. Structures for Organizing Knowledge: Exploring Taxonomies, Ontologies, and Other Schema explores and explains this basic function by looking at three questions: 1) How do we organize objects so that they make sense and are useful? 2) What role do categories, classifications, taxonomies, and other structures play in the process of organizing? 3) What do information professionals need to know about organizing behaviors in order to design useful structures for organizing knowledge? Taking a broad, yet specialized approach that is a first in the field, this book answers those questions by examining three threads: traditional structures for organizing knowledge; personal structures for organizing knowledge; and socially-constructed structures for organizing knowledge. Through these threads, it offers avenues for expanding thinking on classification and classification schemes, taxonomy and ontology development, and structures. Both a history of the development of taxonomies and an analysis of current research, theories, and applications, this volume explores a wide array of topics, including the new digital, social aspect of taxonomy development. Examples of subjects covered include: Formal and informal structures Applications of knowledge structures Classification schemes Early taxonomists and their contributions Social networking, bookmarking, and cataloging sites Cataloging codes Standards and best practices Tags, tagging, and folksonomies Descriptive cataloging Metadata schema standards Thought exercises, references, and a list of helpful websites augment each section. A final chapter, "Thinking Ahead: Are We at a Crossroads?" uses "envisioning exercises" to help LIS professionals look into the future.
  8. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 2257) [ClassicSimilarity], result of:
          0.024150565 = score(doc=2257,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 2257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
      0.2 = coord(1/5)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.
  9. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0043201842 = product of:
      0.02160092 = sum of:
        0.02160092 = weight(_text_:it in 92) [ClassicSimilarity], result of:
          0.02160092 = score(doc=92,freq=10.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.14290836 = fieldWeight in 92, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.015625 = fieldNorm(doc=92)
      0.2 = coord(1/5)
    
    Footnote
    Rez. in: JASIST 56(2005) no.2, S.215-216 (A. Heath): "What is small, thoroughly organized, and easy to understand? Well, it's Heting Chu's latest book an information retrieval. A very welcome release, this small literary addition to the field (only 248 pages) contains a concise and weIl-organized discussion of every major topic in information retrieval. The often-complex field of information retrieval is presented from its origin in the early 1950s to the present day. The organization of this text is top-notch, thus making this an easy read for even the novice. Unlike other titles in this area, Chu's user-friendly style of writing is done an purpose to properly introduce newcomers to the field in a less intimidating way. As stated by the author in the Preface, the purpose of the book is to "present a systematic, thorough yet nontechnical view of the field by using plain language to explain complex subjects." Chu has definitely struck up the right combination of ingredients. In a field so broad and complex, a well-organized presentation of topics that don't trip an themselves is essential. The use of plain language where possible is also a good choice for this topic because it allows one to absorb topics that are, by nature, not as easy to grasp. For instance, Chapters 6 and 7, which cover retrieval approaches and techniques, an often painstaking topic for many students and teachers is deftly handled with the use of tables that can be used to compare and contrast the various models discussed. I particularly loved Chu's use of Koll's 2000 article from the Bulletin of the American Society for Information Science to explain subject searching at the beginning of Chapter 6, which discusses the differences between browsing and searching. The Koll article uses the task of finding a needle in a haystack as an analogy.
    Chu's intent with this book is clear throughout the entire text. With this presentation, she writes with the novice in mind or as she puls it in the Preface, "to anyone who is interested in learning about the field, particularly those who are new to it." After reading the text, I found that this book is also an appropriate reference book for those who are somewhat advanced in the field. I found the chapters an information retrieval models and techniques, metadata, and AI very informative in that they contain information that is often rather densely presented in other texts. Although, I must say, the metadata section in Chapter 3 is pretty basic and contains more questions about the area than information. . . . It is an excellent book to have in the classroom, an your bookshelf, etc. It reads very well and is written with the reader in mind. If you are in need of a more advanced or technical text an the subject, this is not the book for you. But, if you are looking for a comprehensive, manual that can be used as a "flip-through," then you are in luck."
  10. Intner, S.S.; Lazinger, S.S.; Weihs, J.: Metadata and its impact on libraries (2005) 0.00
    0.0033464003 = product of:
      0.016732002 = sum of:
        0.016732002 = weight(_text_:it in 339) [ClassicSimilarity], result of:
          0.016732002 = score(doc=339,freq=6.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.110696346 = fieldWeight in 339, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.015625 = fieldNorm(doc=339)
      0.2 = coord(1/5)
    
    Footnote
    Rez. in: JASIST. 58(2007) no.6., S.909-910 (A.D. Petrou): "A division in metadata definitions for physical objects vs. those for digital resources offered in Chapter 1 is punctuated by the use of broader, more inclusive metadata definitions, such as data about data as well as with the inclusion of more specific metadata definitions intended for networked resources. Intertwined with the book's subject matter, which is to "distinguish traditional cataloguing from metadata activity" (5), the authors' chosen metadata definition is also detailed on page 5 as follows: Thus while granting the validity of the inclusive definition, we concentrate primarily on metadata as it is most commonly thought of both inside and outside of the library community, as "structured information used to find, access, use and manage information resources primarily in a digital environment." (International Encyclopedia of Information and Library Science, 2003) Metadata principles discussed by the authors include modularity, extensibility, refinement and multilingualism. The latter set is followed by seven misconceptions about metadata. Two types of metadata discussed are automatically generated indexes and manually created records. In terms of categories of metadata, the authors present three sets of them as follows: descriptive, structural, and administrative metadata. Chapter 2 focuses on metadata for communities of practice, and is a prelude to content in Chapter 3 where metadata applications, use, and development are presented from the perspective of libraries. Chapter 2 discusses the emergence and impact of metadata on organization and access of online resources from the perspective of communities for which such standards exist and for the need for mapping one standard to another. Discussion focuses on metalanguages, such as Standard Generalized Markup Language (SGML) and eXtensible Markup Language (XML), "capable of embedding descriptive elements within the document markup itself' (25). This discussion falls under syntactic interoperability. For semantic interoperability, HTML and other mark-up languages, such as Text Encoding Initiative (TEI) and Computer Interchange of Museum Information (CIMI), are covered. For structural interoperability, Dublin Core's 15 metadata elements are grouped into three areas: content (title, subject, description, type, source, relation, and coverage), intellectual property (creator, publisher, contributor and rights), and instantiation (date, format, identifier, and language) for discussion.
    Other selected specialized metadata element sets or schemas, such as Government Information Locator Service (GILS), are presented. Attention is brought to the different sets of elements and the need for linking up these elements across metadata schemes from a semantic point of view. It is no surprise, then, that after the presentation of additional specialized sets of metadata from the educational community and the arts sector, attention is turned to the discussion of Crosswalks between metadata element sets or the mapping of one metadata standard to another. Finally, the five appendices detailing elements found in Dublin Core, GILS, ARIADNE versions 3 and 3. 1, and Categories for the Description of Works of Art are an excellent addition to this chapter's focus on metadata and communities of practice. Chapters 3-6 provide an up-to-date account of the use of metadata standards in Libraries from the point of view of a community of practice. Some of the content standards included in these four chapters are AACR2, Dewey Decimal Classification (DDC), and Library of Congress Subject Classification. In addition, uses of MARC along with planned implementations of the archival community's encoding scheme, EAD, are covered in detail. In a way, content in these chapters can be considered as a refresher course on the history, current state, importance, and usefulness of the above-mentioned standards in Libraries. Application of the standards is offered for various types of materials, such as monographic materials, continuing resources, and integrating library metadata into local catalogs and databases. A review of current digital library projects takes place in Chapter 7. While details about these projects tend to become out of date fast, the sections on issues and problems encountered in digital projects and successes and failures deserve any reader's close inspection. A suggested model is important enough to merit a specific mention below, in a short list format, as it encapsulates lessons learned from issues, problems, successes, and failures in digital projects. Before detailing the model, however, the various projects included in Chapter 7 should be mentioned. The projects are: Colorado Digitization Project, Cooperative Online Resource Catalog (an Office of Research project by OCLC, Inc.), California Digital Library, JSTOR, LC's National Digital Library Program and VARIATIONS.
  11. Broughton, V.: Essential thesaurus construction (2006) 0.00
    0.0019320453 = product of:
      0.009660226 = sum of:
        0.009660226 = weight(_text_:it in 2924) [ClassicSimilarity], result of:
          0.009660226 = score(doc=2924,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.063910566 = fieldWeight in 2924, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.015625 = fieldNorm(doc=2924)
      0.2 = coord(1/5)
    
    Footnote
    Weitere Rez. in: New Library World 108(2007) nos.3/4, S.190-191 (K.V. Trickey): "Vanda has provided a very useful work that will enable any reader who is prepared to follow her instruction to produce a thesaurus that will be a quality language-based subject access tool that will make the task of information retrieval easier and more effective. Once again I express my gratitude to Vanda for producing another excellent book." - Electronic Library 24(2006) no.6, S.866-867 (A.G. Smith): "Essential thesaurus construction is an ideal instructional text, with clear bullet point summaries at the ends of sections, and relevant and up to date references, putting thesauri in context with the general theory of information retrieval. But it will also be a valuable reference for any information professional developing or using a controlled vocabulary." - KO 33(2006) no.4, S.215-216 (M.P. Satija)

Types