Search (490 results, page 1 of 25)

  • × theme_ss:"Informetrie"
  1. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.04
    0.041627973 = product of:
      0.10406993 = sum of:
        0.0540023 = weight(_text_:it in 2734) [ClassicSimilarity], result of:
          0.0540023 = score(doc=2734,freq=10.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.3572709 = fieldWeight in 2734, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.050067633 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
          0.050067633 = score(doc=2734,freq=4.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.27358043 = fieldWeight in 2734, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
      0.4 = coord(2/5)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  2. Burrell, Q.L.: Predicting future citation behavior (2003) 0.04
    0.038952045 = product of:
      0.09738011 = sum of:
        0.04781568 = weight(_text_:it in 3837) [ClassicSimilarity], result of:
          0.04781568 = score(doc=3837,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.31634116 = fieldWeight in 3837, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3837)
        0.04956443 = weight(_text_:22 in 3837) [ClassicSimilarity], result of:
          0.04956443 = score(doc=3837,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.2708308 = fieldWeight in 3837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3837)
      0.4 = coord(2/5)
    
    Abstract
    In this article we further develop the theory for a stochastic model for the citation process in the presence of obsolescence to predict the future citation pattern of individual papers in a collection. More precisely, we investigate the conditional distribution-and its mean- of the number of citations to a paper after time t, given the number of citations it has received up to time t. In an important parametric case it is shown that the expected number of future citations is a linear function of the current number, this being interpretable as an example of a success-breeds-success phenomenon.
    Date
    29. 3.2003 19:22:48
  3. Pichappan, P.; Sangaranachiyar, S.: Ageing approach to scientific eponyms (1996) 0.04
    0.038114388 = product of:
      0.09528597 = sum of:
        0.038640905 = weight(_text_:it in 80) [ClassicSimilarity], result of:
          0.038640905 = score(doc=80,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 80, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0625 = fieldNorm(doc=80)
        0.05664506 = weight(_text_:22 in 80) [ClassicSimilarity], result of:
          0.05664506 = score(doc=80,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.30952093 = fieldWeight in 80, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=80)
      0.4 = coord(2/5)
    
    Abstract
    There is a decrease in the incidence of explicit references to a paper over time, hence the assumption that information ages. In a study which attempts to discover whether information really ages it is necessary to include eponyms, anonyms and footnote references. Reports a pilot study which demonstrates that there is an increase over time in the frequency of use of eponyms
    Footnote
    Report presented at the 16th National Indian Association of Special Libraries and Information Centres Seminar Special Interest Group Meeting on Informatrics in Bombay, 19-22 Dec 94
  4. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.03
    0.033387464 = product of:
      0.08346866 = sum of:
        0.04098487 = weight(_text_:it in 7659) [ClassicSimilarity], result of:
          0.04098487 = score(doc=7659,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27114958 = fieldWeight in 7659, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.042483795 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
          0.042483795 = score(doc=7659,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 7659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
      0.4 = coord(2/5)
    
    Abstract
    It is possible, using ISI's Journal Citation Report (JCR), to calculate average impact factors (AIF) for LCR's subject categories but it can be more useful to know the global Impact Factor (GIF) of a subject category and compare the 2 values. Reports results of a study to compare the relationships between AIFs and GIFs of subjects, based on the particular case of the average impact factor of a subfield versus the impact factor of this subfield as a whole, the difference being studied between an average of quotients, denoted as AQ, and a global average, obtained as a quotient of averages, and denoted as GQ. In the case of impact factors, AQ becomes the average impact factor of a field, and GQ becomes its global impact factor. Discusses a number of applications of this technique in the context of informetrics and scientometrics
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  5. Ridenour, L.: Boundary objects : measuring gaps and overlap between research areas (2016) 0.03
    0.033387464 = product of:
      0.08346866 = sum of:
        0.04098487 = weight(_text_:it in 2835) [ClassicSimilarity], result of:
          0.04098487 = score(doc=2835,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27114958 = fieldWeight in 2835, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=2835)
        0.042483795 = weight(_text_:22 in 2835) [ClassicSimilarity], result of:
          0.042483795 = score(doc=2835,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 2835, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=2835)
      0.4 = coord(2/5)
    
    Abstract
    The aim of this paper is to develop methodology to determine conceptual overlap between research areas. It investigates patterns of terminology usage in scientific abstracts as boundary objects between research specialties. Research specialties were determined by high-level classifications assigned by Thomson Reuters in their Essential Science Indicators file, which provided a strictly hierarchical classification of journals into 22 categories. Results from the query "network theory" were downloaded from the Web of Science. From this file, two top-level groups, economics and social sciences, were selected and topically analyzed to provide a baseline of similarity on which to run an informetric analysis. The Places & Spaces Map of Science (Klavans and Boyack 2007) was used to determine the proximity of disciplines to one another in order to select the two disciplines use in the analysis. Groups analyzed share common theories and goals; however, groups used different language to describe their research. It was found that 61% of term words were shared between the two groups.
  6. Milard, B.; Pitarch, Y.: Egocentric cocitation networks and scientific papers destinies (2023) 0.03
    0.033387464 = product of:
      0.08346866 = sum of:
        0.04098487 = weight(_text_:it in 918) [ClassicSimilarity], result of:
          0.04098487 = score(doc=918,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.27114958 = fieldWeight in 918, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=918)
        0.042483795 = weight(_text_:22 in 918) [ClassicSimilarity], result of:
          0.042483795 = score(doc=918,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 918, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=918)
      0.4 = coord(2/5)
    
    Abstract
    To what extent is the destiny of a scientific paper shaped by the cocitation network in which it is involved? What are the social contexts that can explain these structuring? Using bibliometric data, interviews with researchers, and social network analysis, this article proposes a typology based on egocentric cocitation networks that displays a quadruple structuring (before and after publication): polarization, clusterization, atomization, and attrition. It shows that the academic capital of the authors and the intellectual resources of their research are key factors of these destinies, as are the social relations between the authors concerned. The circumstances of the publishing are also correlated with the structuring of the egocentric cocitation networks, showing how socially embedded they are. Finally, the article discusses the contribution of these original networks to the analyze of scientific production and its dynamics.
    Date
    21. 3.2023 19:22:14
  7. Zhang, Y.: ¬The impact of Internet-based electronic resources on formal scholarly communication in the area of library and information science : a citation analysis (1998) 0.03
    0.02968728 = product of:
      0.0742182 = sum of:
        0.024150565 = weight(_text_:it in 2808) [ClassicSimilarity], result of:
          0.024150565 = score(doc=2808,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 2808, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
        0.050067633 = weight(_text_:22 in 2808) [ClassicSimilarity], result of:
          0.050067633 = score(doc=2808,freq=4.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.27358043 = fieldWeight in 2808, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2808)
      0.4 = coord(2/5)
    
    Abstract
    Internet based electronic resources are growing dramatically but there have been no empirical studies evaluating the impact of e-sources, as a whole, on formal scholarly communication. reports results of an investigation into how much e-sources have been used in formal scholarly communication, using a case study in the area of Library and Information Science (LIS) during the period 1994 to 1996. 4 citation based indicators were used in the study of the impact measurement. Concludes that, compared with the impact of print sources, the impact of e-sources on formal scholarly communication in LIS is small, as measured by e-sources cited, and does not increase significantly by year even though there is observable growth of these impact across the years. It is found that periodical format is related to the rate of citing e-sources, articles are more likely to cite e-sources than are print priodical articles. However, once authors cite electronic resource, there is no significant difference in the number of references per article by periodical format or by year. Suggests that, at this stage, citing e-sources may depend on authors rather than the periodical format in which authors choose to publish
    Date
    30. 1.1999 17:22:22
  8. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.03
    0.02968728 = product of:
      0.0742182 = sum of:
        0.024150565 = weight(_text_:it in 1291) [ClassicSimilarity], result of:
          0.024150565 = score(doc=1291,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 1291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.050067633 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
          0.050067633 = score(doc=1291,freq=4.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.27358043 = fieldWeight in 1291, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
      0.4 = coord(2/5)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
  9. Yan, E.: Finding knowledge paths among scientific disciplines (2014) 0.03
    0.02968728 = product of:
      0.0742182 = sum of:
        0.024150565 = weight(_text_:it in 1534) [ClassicSimilarity], result of:
          0.024150565 = score(doc=1534,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 1534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1534)
        0.050067633 = weight(_text_:22 in 1534) [ClassicSimilarity], result of:
          0.050067633 = score(doc=1534,freq=4.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.27358043 = fieldWeight in 1534, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1534)
      0.4 = coord(2/5)
    
    Abstract
    This paper uncovers patterns of knowledge dissemination among scientific disciplines. Although the transfer of knowledge is largely unobservable, citations from one discipline to another have been proven to be an effective proxy to study disciplinary knowledge flow. This study constructs a knowledge-flow network in which a node represents a Journal Citation Reports subject category and a link denotes the citations from one subject category to another. Using the concept of shortest path, several quantitative measurements are proposed and applied to a knowledge-flow network. Based on an examination of subject categories in Journal Citation Reports, this study indicates that social science domains tend to be more self-contained, so it is more difficult for knowledge from other domains to flow into them; at the same time, knowledge from science domains, such as biomedicine-, chemistry-, and physics-related domains, can access and be accessed by other domains more easily. This study also shows that social science domains are more disunified than science domains, because three fifths of the knowledge paths from one social science domain to another require at least one science domain to serve as an intermediate. This work contributes to discussions on disciplinarity and interdisciplinarity by providing empirical analysis.
    Date
    26.10.2014 20:22:22
  10. Kreider, J.: ¬The correlation of local citation data with citation data from Journal Citation Reports (1999) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 102) [ClassicSimilarity], result of:
          0.028980678 = score(doc=102,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 102, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=102)
        0.042483795 = weight(_text_:22 in 102) [ClassicSimilarity], result of:
          0.042483795 = score(doc=102,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 102, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=102)
      0.4 = coord(2/5)
    
    Abstract
    University librarians continue to face the difficult task of determining which journals remain crucial for their collections during these times of static financial resources and escalating journal costs. One evaluative tool, Journal Citation Reports (JCR), recently has become available on CD-ROM, making it simpler for librarians to use its citation data as input for ranking journals. But many librarians remain unconvinced that the global citation data from the JCR bears enough correspondence to their local situation to be useful. In this project, I explore the correlation between global citation data available from JCR with local citation data generated specifically for the University of British Columbia, for 20 subject fields in the sciences and social sciences. The significant correlations obtained in this study suggest that large research-oriented university libraries could consider substituting global citation data for local citation data when evaluating their journals, with certain cautions.
    Date
    10. 9.2000 17:38:22
  11. Raan, A.F.J. van: Scaling rules in the science system : influence of field-specific citation characteristics on the impact of research groups (2008) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 2758) [ClassicSimilarity], result of:
          0.028980678 = score(doc=2758,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 2758, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=2758)
        0.042483795 = weight(_text_:22 in 2758) [ClassicSimilarity], result of:
          0.042483795 = score(doc=2758,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 2758, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=2758)
      0.4 = coord(2/5)
    
    Abstract
    A representation of science as a citation density landscape is proposed and scaling rules with the field-specific citation density as a main topological property are investigated. The focus is on the size-dependence of several main bibliometric indicators for a large set of research groups while distinguishing between top-performance and lower-performance groups. It is demonstrated that this representation of the science system is particularly effective to understand the role and the interdependencies of the different bibliometric indicators and related topological properties of the landscape.
    Date
    22. 3.2009 19:03:12
  12. Huang, M.-H.; Huang, W.-T.; Chang, C.-C.; Chen, D. Z.; Lin, C.-P.: The greater scattering phenomenon beyond Bradford's law in patent citation (2014) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 1352) [ClassicSimilarity], result of:
          0.028980678 = score(doc=1352,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 1352, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=1352)
        0.042483795 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
          0.042483795 = score(doc=1352,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 1352, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=1352)
      0.4 = coord(2/5)
    
    Abstract
    Patent analysis has become important for management as it offers timely and valuable information to evaluate R&D performance and identify the prospects of patents. This study explores the scattering patterns of patent impact based on citations in 3 distinct technological areas, the liquid crystal, semiconductor, and drug technological areas, to identify the core patents in each area. The research follows the approach from Bradford's law, which equally divides total citations into 3 zones. While the result suggests that the scattering of patent citations corresponded with features of Bradford's law, the proportion of patents in the 3 zones did not match the proportion as proposed by the law. As a result, the study shows that the distributions of citations in all 3 areas were more concentrated than what Bradford's law proposed. The Groos (1967) droop was also presented by the scattering of patent citations, and the growth rate of cumulative citation decreased in the third zone.
    Date
    22. 8.2014 17:11:29
  13. Dobrota, M.; Dobrota, M.: ARWU ranking uncertainty and sensitivity : what if the award factor was Excluded? (2016) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 2652) [ClassicSimilarity], result of:
          0.028980678 = score(doc=2652,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 2652, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=2652)
        0.042483795 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
          0.042483795 = score(doc=2652,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 2652, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=2652)
      0.4 = coord(2/5)
    
    Abstract
    The Academic Ranking of World Universities (ARWU) uses six university performance indicators, including "Alumni" and "Awards"-the number of alumni and staff winning Nobel Prizes and Fields Medals. These two indicators raised doubts about the reliability of this ranking method because they are difficult to cope with. Recently, a newsletter was published featuring a reduced ARWU ranking list, leaving out Nobel Prize and Fields Medal indicators: the Alternative Ranking (Excluding Award Factor). We used uncertainty and sensitivity analyses to examine and compare the stability and confidence of the official ARWU ranking and the Alternative Ranking. The results indicate that if the ARWU ranking is reduced to the 4-indicator Alternative Ranking, it shows greater certainty and stability in ranking universities.
    Date
    22. 1.2016 14:40:53
  14. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 3211) [ClassicSimilarity], result of:
          0.028980678 = score(doc=3211,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 3211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.042483795 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
          0.042483795 = score(doc=3211,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 3211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
      0.4 = coord(2/5)
    
    Abstract
    Scientists and managers using citation-based indicators to help evaluate research cannot evaluate recent articles because of the time needed for citations to accrue. Reading occurs before citing, however, and so it makes sense to count readers rather than citations for recent publications. To assess this, Mendeley readers and citations were obtained for articles from 2004 to late 2014 in five broad categories (agriculture, business, decision science, pharmacy, and the social sciences) and 50 subcategories. In these areas, citation counts tended to increase with every extra year since publication, and readership counts tended to increase faster initially but then stabilize after about 5 years. The correlation between citations and readers was also higher for longer time periods, stabilizing after about 5 years. Although there were substantial differences between broad fields and smaller differences between subfields, the results confirm the value of Mendeley reader counts as early scientific impact indicators.
    Date
    16.11.2016 11:07:22
  15. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.03
    0.02858579 = product of:
      0.07146447 = sum of:
        0.028980678 = weight(_text_:it in 4291) [ClassicSimilarity], result of:
          0.028980678 = score(doc=4291,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 4291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
        0.042483795 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
          0.042483795 = score(doc=4291,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.23214069 = fieldWeight in 4291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
      0.4 = coord(2/5)
    
    Abstract
    Counts of tweets and Mendeley user libraries have been proposed as altmetric alternatives to citation counts for the impact assessment of articles. Although both have been investigated to discover whether they correlate with article citations, it is not known whether users tend to tweet or save (in Mendeley) the same kinds of articles that they cite. In response, this article compares pairs of articles that are tweeted, saved to a Mendeley library, or cited by the same user, but possibly a different user for each source. The study analyzes 1,131,318 articles published in 2012, with minimum tweeted (10), saved to Mendeley (100), and cited (10) thresholds. The results show surprisingly minor overall overlaps between the three phenomena. The importance of journals for Twitter and the presence of many bots at different levels of activity suggest that this site has little value for impact altmetrics. The moderate differences between patterns of saving and citation suggest that Mendeley can be used for some types of impact assessments, but sensitivity is needed for underlying differences.
    Date
    28. 7.2018 10:00:22
  16. Norris, M.; Oppenheim, C.: ¬The h-index : a broad review of a new bibliometric indicator (2010) 0.03
    0.027822888 = product of:
      0.06955722 = sum of:
        0.034154054 = weight(_text_:it in 4147) [ClassicSimilarity], result of:
          0.034154054 = score(doc=4147,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22595796 = fieldWeight in 4147, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4147)
        0.035403162 = weight(_text_:22 in 4147) [ClassicSimilarity], result of:
          0.035403162 = score(doc=4147,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.19345059 = fieldWeight in 4147, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4147)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - This review aims to show, broadly, how the h-index has become a subject of widespread debate, how it has spawned many variants and diverse applications since first introduced in 2005 and some of the issues in its use. Design/methodology/approach - The review drew on a range of material published in 1990 or so sources published since 2005. From these sources, a number of themes were identified and discussed ranging from the h-index's advantages to which citation database might be selected for its calculation. Findings - The analysis shows how the h-index has quickly established itself as a major subject of interest in the field of bibliometrics. Study of the index ranges from its mathematical underpinning to a range of variants perceived to address the indexes' shortcomings. The review illustrates how widely the index has been applied but also how care must be taken in its application. Originality/value - The use of bibliometric indicators to measure research performance continues, with the h-index as its latest addition. The use of the h-index, its variants and many applications to which it has been put are still at the exploratory stage. The review shows the breadth and diversity of this research and the need to verify the veracity of the h-index by more studies.
    Date
    8. 1.2011 19:22:13
  17. Liu, D.-R.; Shih, M.-J.: Hybrid-patent classification based on patent-network analysis (2011) 0.03
    0.027822888 = product of:
      0.06955722 = sum of:
        0.034154054 = weight(_text_:it in 4189) [ClassicSimilarity], result of:
          0.034154054 = score(doc=4189,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22595796 = fieldWeight in 4189, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4189)
        0.035403162 = weight(_text_:22 in 4189) [ClassicSimilarity], result of:
          0.035403162 = score(doc=4189,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.19345059 = fieldWeight in 4189, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4189)
      0.4 = coord(2/5)
    
    Abstract
    Effective patent management is essential for organizations to maintain their competitive advantage. The classification of patents is a critical part of patent management and industrial analysis. This study proposes a hybrid-patent-classification approach that combines a novel patent-network-based classification method with three conventional classification methods to analyze query patents and predict their classes. The novel patent network contains various types of nodes that represent different features extracted from patent documents. The nodes are connected based on the relationship metrics derived from the patent metadata. The proposed classification method predicts a query patent's class by analyzing all reachable nodes in the patent network and calculating their relevance to the query patent. It then classifies the query patent with a modified k-nearest neighbor classifier. To further improve the approach, we combine it with content-based, citation-based, and metadata-based classification methods to develop a hybrid-classification approach. We evaluate the performance of the hybrid approach on a test dataset of patent documents obtained from the U.S. Patent and Trademark Office, and compare its performance with that of the three conventional methods. The results demonstrate that the proposed patent-network-based approach yields more accurate class predictions than the patent network-based approach.
    Date
    22. 1.2011 13:04:21
  18. Schubert, T.; Michels, C.: Placing articles in the large publisher nations : is there a "free lunch" in terms of higher impact? (2013) 0.03
    0.027822888 = product of:
      0.06955722 = sum of:
        0.034154054 = weight(_text_:it in 669) [ClassicSimilarity], result of:
          0.034154054 = score(doc=669,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22595796 = fieldWeight in 669, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=669)
        0.035403162 = weight(_text_:22 in 669) [ClassicSimilarity], result of:
          0.035403162 = score(doc=669,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.19345059 = fieldWeight in 669, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=669)
      0.4 = coord(2/5)
    
    Abstract
    This paper deals with the role of a journal's publisher country in determining the expected citation rates of the articles published in it. We analyze whether a paper has a higher citation rate when it is published in one of the large publisher nations, the U.S., U.K., or the Netherlands, compared to a hypothetical situation when the same paper is published in journals of different origin. This would constitute a "free lunch," which could be explained by a Matthew effect visible on the country-level, similar to the well-documented Matthew effect on the author-level. We first use a simulation model that highlights increasing citation returns to quality as the central key condition on which such a Matthew effect may emerge. Then we use an international bibliometric panel data set of forty-nine countries for the years 2000-2010 and show that such a "free lunch" implied by this Matthew effect can be observed for top journals from the U.S. and depending on the specification also from the U.K. and the Netherlands, while there is no effect for lower-ranked American journals and negative effects for lower-ranked British journals as well as those coming from the Netherlands.
    Date
    22. 3.2013 19:45:49
  19. Freitas, J.L.; Gabriel Jr., R.F.; Bufrem, L.S.: Theoretical approximations between Brazilian and Spanish authors' production in the field of knowledge organization in the production of journals on information science in Brazil (2012) 0.03
    0.026785374 = product of:
      0.066963434 = sum of:
        0.038640905 = weight(_text_:it in 144) [ClassicSimilarity], result of:
          0.038640905 = score(doc=144,freq=8.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.25564227 = fieldWeight in 144, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.03125 = fieldNorm(doc=144)
        0.02832253 = weight(_text_:22 in 144) [ClassicSimilarity], result of:
          0.02832253 = score(doc=144,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.15476047 = fieldWeight in 144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=144)
      0.4 = coord(2/5)
    
    Abstract
    This work identifies and analyzes literature about knowledge organization (KO), expressed in scientific journals' communication of information science (IS). It performs an exploratory study on the Base de Dados Referencial de Artigos de Periódicos em Ciência da Informação (BRAPCI, Reference Database of Journal Articles on Information Science) between the years 2000 and 2010. The descriptors relating to "knowledge organization" are used in order to recover and analyze the corresponding articles and to identify descriptors and concepts which integrate the semantic universe related to KO. Through the analysis of content, based on metrical studies, this article gathers and interprets data relating to documents and authors. Through this, it demonstrates the development of this field and its research fronts according to the observed characteristics, as well as noting the transformation indicative in the production of knowledge. The work describes the influences of the Spanish researchers on Brazilian literature in the fields of knowledge and information organization. As a result, it presents the most cited and productive authors, the theoretical currents which support them, and the most significant relationships of the Spanish-Brazilian authors network. Based on the constant key-words analysis in the cited articles, the co-existence of the French conception current and the incipient Spanish influence in Brazil is observed. Through this, it contributes to the comprehension of the thematic range relating to KO, stimulating both criticism and self-criticism, debate and knowledge creation, based on studies that have been developed and institutionalized in academic contexts in Spain and Brazil.
    Content
    Beitrag einer Section "Selected Papers from the 1ST Brazilian Conference on Knowledge Organization And Representation, Faculdade de Ciência da Informação, Campus Universitário Darcy Ribeiro Brasília, DF Brasil, October 20-22, 2011" Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_39_2012_3_g.pdf.
  20. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.02
    0.024714613 = product of:
      0.061786532 = sum of:
        0.033464003 = weight(_text_:it in 5171) [ClassicSimilarity], result of:
          0.033464003 = score(doc=5171,freq=6.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22139269 = fieldWeight in 5171, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.02832253 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
          0.02832253 = score(doc=5171,freq=2.0), product of:
            0.18300882 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.052260913 = queryNorm
            0.15476047 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
      0.4 = coord(2/5)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35

Years

Languages

  • e 478
  • d 9
  • dk 1
  • ro 1
  • More… Less…

Types

  • a 481
  • m 6
  • el 4
  • s 4
  • r 1
  • More… Less…