Search (10 results, page 1 of 1)

  • × year_i:[2000 TO 2010}
  • × author_ss:"Gnoli, C."
  1. Gnoli, C.: Facets: a fruitful notion in many domains (2008) 0.01
    0.010929298 = product of:
      0.05464649 = sum of:
        0.05464649 = weight(_text_:it in 49) [ClassicSimilarity], result of:
          0.05464649 = score(doc=49,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.36153275 = fieldWeight in 49, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0625 = fieldNorm(doc=49)
      0.2 = coord(1/5)
    
    Abstract
    This special issue of ''Axiomathes'' is devoted to a technique originally developed within library science: facet analysis. During discussions with Roberto Poli, it was realized that facet analysis shares interesting features with analytical methods in several other fields, including philosophy, psychology, linguistics, and computer science. For these reasons, in an interdisciplinary spirit, we believe that facet analysis is a relevant topic for the scope of this journal. It is hoped that readers will be persuaded by this after examining the present contributions.
  2. Gnoli, C.; Bosch, M.; Mazzocchi, F.: ¬A new relationship for multidisciplinary knowledge organization systems : dependence (2007) 0.01
    0.01080046 = product of:
      0.0540023 = sum of:
        0.0540023 = weight(_text_:it in 1095) [ClassicSimilarity], result of:
          0.0540023 = score(doc=1095,freq=10.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.3572709 = fieldWeight in 1095, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
      0.2 = coord(1/5)
    
    Abstract
    Most existing knowledge organization systems (KOS) are based on disciplines. However, as research is increasingly multidisciplinary, scholars need tools allowing them to explore relations between phenomena throughout the whole spectrum of knowledge. We focus on the dependence relationship, holding between one phenomenon and those at lower integrative levels on which it depends for its existence, like alpinism on mountains, and mountains on rocks. This relationship was first described by D.J. Foskett in the context of CRG's work towards a non-disciplinary scheme. We discuss its possible status and representation in three kinds of KOS: thesauri, classification schemes, and ontologies. In thesaural structures, dependence could be one of the subtypes of associative relationships (RT) which have been wished to enrich their semantic functions. In classification, it could act together with hierarchy as a structuring principle, providing a way of connecting and sorting main classes based on integrative levels. In ontologies, it could be defined as a dependsOn direct slot, expressing the fact that through it a class does not inherit all properties of the other class on which it depends. We argue that providing search interfaces with cross-disciplinary links of this kind can give users more adequate tools to examine the recorded knowledge through creative paths overcoming some limitations of its canonical segmentation into disciplines.
  3. Gnoli, C.: Knowledge organization in Italy (2004) 0.01
    0.008281919 = product of:
      0.041409593 = sum of:
        0.041409593 = weight(_text_:it in 3750) [ClassicSimilarity], result of:
          0.041409593 = score(doc=3750,freq=12.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.2739595 = fieldWeight in 3750, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3750)
      0.2 = coord(1/5)
    
    Content
    "Subject headings Many Italian libraries create subject headings for their catalogues, using as a reference guide the "Soggettario per i catalogui delle biblioteche italiane." This is basically a list of subject terms created by the Biblioteca nazionale centrale di Firenze (BNCF), first published in 1956 and later updated with various lists of new subject headings. Though the Soggettario is still the main available reference, librarians are generally aware that it is outdated in both vocabulary and structure, especially as it does not provide explicit principles and rules to create and combine subject headings. A research group, called the Gruppo di ricerca sull'indicizzazione per soggetto (GRIS), was founded in 1990. It was devoted to improving the principles and consistency of subject indexing. Its members have performed in depth investigations of the structure of subject headings, starting with the principles of facet analysis used in PRECIS and including original developments. Results of their work are coded into the Guida all'indicizzazione per soggetto, published in 1996 and available also online <http:// wwwaib.it/aib/commiss/gris/gulda.htm>. The GRIS guide does not concern vocabulary, but morphological and syntactical rules for choosing and combining terms according to a sound citation order, based an a "role scheme." Unfortunately, GRIS principles have been applied only in a small number of libraries, mainly in Tuscany, rohere most GRIS members are located. A new project is now attempting to blend the traditional authority of the Soggettario with the more advanced principles of GRIS. A working group has been formed with people from BNCF, GRIS, and others, to study the feasibility of a renewal of the Soggettario. The group produced a report book in 2002, specifying the desirable features of the new system, and is at present searching for grants to implement it.
    Terminology and thesauri BNCF is also involved in a working group collecting information an online terminological resources <http://wwwindire.it/websemantico>. The group is headed by Paola Capitani, and has organized several roundtables an terminology in special domains, such as economy, fashion, law, and education. Thesauri are generally poorly known and used in Italy, although there are significant exceptions: among faceted systems we can mention the "Thesauro italiano di sociologia," published in 1999, and the "Thesaurus regionale toscano," as well as specialized an social sciences including a general outline, available both in print (1996) and online <http:// www regione.toscana.it/ius/ns-thesaurus/>. Classification systems The Dewey Decimal Classification (DDC) is by far the most widespread classification scheme in Italian libraries. A working group, coordinated by Luigi Crocetti, regularly translates the new editions of DDC manuals, and gives refresher courses an it for librarians. BNCF makes DDC numbers for bibliographical records both of its own catalogue, and of the national bibliography (= Bibliografia nazionale italiana: BNI), which is available for other libraries in a CD-ROM edition. A very large number of public libraries use DDC for their shelfmarks, so that users are accustomed to it. This situation is different from other European countries, e.g., Spain where UDC is widespread."
  4. Gnoli, C.; Szostak, R.: ¬The Leon Manifesto (2007) 0.01
    0.006830811 = product of:
      0.034154054 = sum of:
        0.034154054 = weight(_text_:it in 661) [ClassicSimilarity], result of:
          0.034154054 = score(doc=661,freq=4.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.22595796 = fieldWeight in 661, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=661)
      0.2 = coord(1/5)
    
    Abstract
    Some relevant proposals regarding the future of knowledge organization emerged during the 8th conference of the ISKO Spanish chapter, which took place in the beautiful, lively atmosphere of the town of León, between 18 and 20 of April 2007. These proposals are here labeled as "the Leon manifesto", and can be summarized in the following points: - the current trend towards an increasing interdisciplinarity of knowledge calls for essentially new knowledge organization systems (KOS), based on a substantive revision of the principles underlying the traditional discipline-based KOS; - this innovation is not only desirable, but also feasible, and should be implemented by actually developing some new KOS; instead of disciplines, the basic unity of the new KOS should be phenomena of the real world as it is represented in human knowledge; - the new KOS should allow users to shift from one perspective or viewpoint to another, thus reflecting the multidimensional nature of complex thought. In particular, it should allow them to search independently for particular phenomena, for particular theories about phenomena (and about relations between phenomena), and for particular methods of investigation; - the connections between phenomena, those between phenomena and the theories studying them, and those between phenomena and the methods to investigate them, can be expressed and managed by analytico-synthetic techniques already developed in faceted classification.
  5. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 2663) [ClassicSimilarity], result of:
          0.028980678 = score(doc=2663,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 2663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
      0.2 = coord(1/5)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
  6. Gnoli, C.; Poli, R.: Levels of reality and levels of representation (2004) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 3533) [ClassicSimilarity], result of:
          0.028980678 = score(doc=3533,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
      0.2 = coord(1/5)
    
    Abstract
    Ontology, in its philosophical meaning, is the discipline investigating the structure of reality. Its findings can be relevant to knowledge organization, and models of knowledge can, in turn, offer relevant ontological suggestions. Several philosophers in time have pointed out that reality is structured into a series of integrative levels, like the physical, the biological, the mental, and the cultural, and that each level plays as a base for the emergence of more complex levels. More detailed theories of levels have been developed by Nicolai Hartmann and James K. Feibleman, and these have been considered as a source for structuring principles in bibliographic classification by both the Classification Research Group (CRG) and Ingetraut Dahlberg. CRG's analysis of levels and of their possible application to a new general classification scheme based an phenomena instead of disciplines, as it was formulated by Derek Austin in 1969, is examined in detail. Both benefits and open problems in applying integrative levels to bibliographic classification are pointed out.
  7. Gnoli, C.: Phylogenetic classification (2006) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 164) [ClassicSimilarity], result of:
          0.028980678 = score(doc=164,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 164, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=164)
      0.2 = coord(1/5)
    
    Abstract
    One general principle in the construction of classification schemes is that of grouping phenomena to be classified according to their shared origin in evolution or history (phylogenesis). In general schemes, this idea has been applied by several classificationists in identifying a series of integrative levels, each originated from the previous ones, and using them as the main classes. In special schemes, common origin is a key principle in many domains: examples are given from the classification of climates, of organisms, and of musical instruments. Experience from these domains, however, suggests that using common origin alone, as done in cladistic taxonomy, can produce weird results, like having birds as a subclass of reptiles; while the most satisfying classifications use a well balanced mix of common origin and similarity. It is discussed how this could be applied to the development of a general classification of phenomena in an emergentist perspective, and how the resulting classification tree could be structured. Charles Bennett's notion of logical depth appears to be a promising conceptual tool for this purpose.
  8. Gnoli, C.: Categories and facets in integrative levels (2008) 0.01
    0.005796136 = product of:
      0.028980678 = sum of:
        0.028980678 = weight(_text_:it in 1806) [ClassicSimilarity], result of:
          0.028980678 = score(doc=1806,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.19173169 = fieldWeight in 1806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.2 = coord(1/5)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  9. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 2291) [ClassicSimilarity], result of:
          0.024150565 = score(doc=2291,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.2 = coord(1/5)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  10. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    0.004830113 = product of:
      0.024150565 = sum of:
        0.024150565 = weight(_text_:it in 2527) [ClassicSimilarity], result of:
          0.024150565 = score(doc=2527,freq=2.0), product of:
            0.15115225 = queryWeight, product of:
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.052260913 = queryNorm
            0.15977642 = fieldWeight in 2527, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.892262 = idf(docFreq=6664, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2527)
      0.2 = coord(1/5)
    
    Abstract
    The evolution of bibliographic classification schemes, from the end of the 19th century to our time, shows a trend of increasing possibilities to combine concepts in a classmark. While the early schemes, like DDC and LCC, were largely enumerative, more and more synthetic devices have appeared with common auxiliaries, facets, and phase relationships. The last editions of UDC and the UDC-derived FATKS project follow this evolution, by introducing more specific phase relationships and more common auxiliaries, like those for general properties and processes. This agrees with the Farradane's principle that each concept should have a place of unique definition, instead of being re-notated in each context where it occurs. This evolution appears to be unfinished, as even in most synthetic schemes many concepts have a different notation according to the disciplinary main classes where they occur. To overcome this limitation, main classes should be defined in terms of phenomena rather than disciplines: the Integrative Level Classification (ILC) research project is currently exploring this possibility. Examples with UDC, FATKS, and ILC notations are discussed.