Search (2 results, page 1 of 1)

  • × author_ss:"Perianes-Rodriguez, A."
  • × theme_ss:"Informetrie"
  1. Perianes-Rodriguez, A.; Ruiz-Castillo, J.: University citation distributions (2016) 0.04
    0.03672103 = product of:
      0.07344206 = sum of:
        0.07344206 = product of:
          0.14688411 = sum of:
            0.14688411 = weight(_text_:500 in 3152) [ClassicSimilarity], result of:
              0.14688411 = score(doc=3152,freq=4.0), product of:
                0.3075407 = queryWeight, product of:
                  6.113391 = idf(docFreq=265, maxDocs=44218)
                  0.050306078 = queryNorm
                0.47760868 = fieldWeight in 3152, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  6.113391 = idf(docFreq=265, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3152)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigate the citation distributions of the 500 universities in the 2013 edition of the Leiden Ranking produced by The Centre for Science and Technological Studies. We use a Web of Science data set consisting of 3.6 million articles published in 2003 to 2008 and classified into 5,119 clusters. The main findings are the following. First, the universality claim, according to which all university-citation distributions, appropriately normalized, follow a single functional form, is not supported by the data. Second, the 500 university citation distributions are all highly skewed and very similar. Broadly speaking, university citation distributions appear to behave as if they differ by a relatively constant scale factor over a large, intermediate part of their support. Third, citation-impact differences between universities account for 3.85% of overall citation inequality. This percentage is greatly reduced when university citation distributions are normalized using their mean normalized citation scores (MNCSs) as normalization factors. Finally, regarding practical consequences, we only need a single explanatory model for the type of high skewness characterizing all university citation distributions, and the similarity of university citation distributions goes a long way in explaining the similarity of the university rankings obtained with the MNCS and the Top 10% indicator.
  2. Perianes-Rodriguez, A.; Ruiz-Castillo, J.: ¬The impact of classification systems in the evaluation of the research performance of the Leiden Ranking universities (2018) 0.03
    0.025965689 = product of:
      0.051931378 = sum of:
        0.051931378 = product of:
          0.103862755 = sum of:
            0.103862755 = weight(_text_:500 in 4374) [ClassicSimilarity], result of:
              0.103862755 = score(doc=4374,freq=2.0), product of:
                0.3075407 = queryWeight, product of:
                  6.113391 = idf(docFreq=265, maxDocs=44218)
                  0.050306078 = queryNorm
                0.33772033 = fieldWeight in 4374, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.113391 = idf(docFreq=265, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4374)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article, we investigate the consequences of choosing different classification systems-namely, the way publications (or journals) are assigned to scientific fields-for the ranking of research units. We study the impact of this choice on the ranking of 500 universities in the 2013 edition of the Leiden Ranking in two cases. First, we compare a Web of Science (WoS) journal-level classification system, consisting of 236 subject categories, and a publication-level algorithmically constructed system, denoted G8, consisting of 5,119 clusters. The result is that the consequences of the move from the WoS to the G8 system using the Top 1% citation impact indicator are much greater than the consequences of this move using the Top 10% indicator. Second, we compare the G8 classification system and a publication-level alternative of the same family, the G6 system, consisting of 1,363 clusters. The result is that, although less important than in the previous case, the consequences of the move from the G6 to the G8 system under the Top 1% indicator are still of a large order of magnitude.